3,506 research outputs found

    Tunneling Recombination in Optically Pumped Graphene with Electron-Hole Puddles

    Full text link
    We evaluate recombination of electrons and holes in optically pumped graphene associated with the interband tunneling between electron-hole puddles and calculate the recombination rate and time. It is demonstrated that this mechanism can be dominant in a wide range of pumping intensities. We show that the tunneling recombination rate and time are nonmonotonic functions of the quasi-Fermi energies of electrons and holes and optical pumping intensity. This can result in hysteresis phenomena.Comment: 4 pages, 3 figure

    体壁腹膜或は胆道の刺戟により惹起される嘔吐に関する生理学的研究

    Get PDF

    Hydrodynamic model for electron-hole plasma in graphene

    Full text link
    We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.Comment: 11 pages, 6 figure

    Morphological study of penumbral formation

    Get PDF
    Penumbrae are known to be area of mainly horizontal magnetic field surrounding umbrae of relatively large and mature sunspots. In this paper, we observationally studied the formation of penumbrae in NOAA10978, where several penumbral formations were observed in G-band images of SOT/Hinode. Thanks to the continuous observation by Hinode, we could morphologically follow the evolution of sunspots and found that there are several paths to the penumbral formation: (1) Active accumulation of magnetic flux, (2) Rapid emergence of magnetic field, and (3) Appearance of twisted or rotating magnetic tubes. In all of these cases, magnetic fields are expected to sustain high inclination at the edges of flux tube concentration longer than the characteristic growth time of downward magnetic pumping.Comment: accepted for publication in PAS
    corecore