1,543 research outputs found
COCO_TS Dataset: Pixel-level Annotations Based on Weak Supervision for Scene Text Segmentation
The absence of large scale datasets with pixel-level supervisions is a
significant obstacle for the training of deep convolutional networks for scene
text segmentation. For this reason, synthetic data generation is normally
employed to enlarge the training dataset. Nonetheless, synthetic data cannot
reproduce the complexity and variability of natural images. In this paper, a
weakly supervised learning approach is used to reduce the shift between
training on real and synthetic data. Pixel-level supervisions for a text
detection dataset (i.e. where only bounding-box annotations are available) are
generated. In particular, the COCO-Text-Segmentation (COCO_TS) dataset, which
provides pixel-level supervisions for the COCO-Text dataset, is created and
released. The generated annotations are used to train a deep convolutional
neural network for semantic segmentation. Experiments show that the proposed
dataset can be used instead of synthetic data, allowing us to use only a
fraction of the training samples and significantly improving the performances
Developmental decrease in NMDA receptor desensitization associated with shift to synapse and interaction with postsynaptic density-95
NMDA receptors (NMDARs) play a crucial role in neuronal development, synaptic plasticity, and excitotoxicity; therefore, regulation of NMDAR function is important in both physiological and pathological conditions. Previous studies indicate that the NMDAR-mediated synaptic current decay rate increases during development because of a switch in receptor subunit composition, contributing to developmental changes in plasticity. To test whether NMDAR desensitization also changes during development, we recorded whole-cell NMDA-evoked currents in cultured rat hippocampal neurons. We found that glycine-independent desensitization of NMDARs decreases during development. This decrease was not dependent on a switch in subunit composition or differential receptor sensitivity to agonist-, Ca2+-, or Zn2+-induced increase in desensitization. Instead, several lines of evidence indicated that the developmental decrease in desensitization was tightly correlated with synaptic localization of the receptor, suggesting that association of NMDARs with proteins selectively expressed at synapses in mature neurons might account for developmental alterations in desensitization. Accordingly, we tested the role of interactions between PSD-95 (postsynaptic density-95) and NMDARs in regulating receptor desensitization. Overexpression of PSD-95 reduced NMDAR desensitization in immature neurons, whereas agents that interfere with synaptic targeting of PSD-95, or induce movement of NMDARs away from synapses and uncouple the receptor from PSD-95, increased NMDAR desensitization in mature neurons. We conclude that synaptic localization and association with PSD-95 increases stability of hippocampal neuronal NMDAR responses to sustained agonist exposure. Our results elucidate an additional mechanism for differentially regulating NMDAR function in neurons of different developmental stages or the response of subpopulations of NMDARs in a single neuron
Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula
The unconventional N-methyl-d-aspartate (NMDA) receptor subunits GluN3A and GluN3B can, when associated with the other glycine-binding subunit GluN1, generate excitatory conductances purely activated by glycine. However, functional GluN1/GluN3 receptors have not been identified in native adult tissues. We discovered that GluN1/GluN3A receptors are operational in neurons of the mouse adult medial habenula (MHb), an epithalamic area controlling aversive physiological states. In the absence of glycinergic neuronal specializations in the MHb, glial cells tuned neuronal activity via GluN1/GluN3A receptors. Reducing GluN1/GluN3A receptor levels in the MHb prevented place-aversion conditioning. Our study extends the physiological and behavioral implications of glycine by demonstrating its control of negatively valued emotional associations via excitatory glycinergic NMDA receptors
Endotoxin and cytokines in patients with gastrointestinal tract perforation
Plasma levels of endotoxin and various cytokines were assessed in 70 patients with gastrointestinal tract perforation. Sepsis developed in 29 of them, and eight of these (27.6%) had on admission endotoxin levels higher than 9.8 pg ml-1. The clinical outcome correlated with the level of tumour necrosis factor α (TNFα), rather than with the endotoxin level. The high interleukin 6 (IL-6) level was shown in septic patients and no correlation was observed between the IL-6 level and the clinical outcome. Plasma TNFα levels tended to change independently from endotoxin levels, suggesting that TNFα may have been locally produced in inflammatory lesions
Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses
Developing hippocampal neurons in microisland culture undergo rapid and extensive transmitter release-dependent depression of evoked (phasic) excitatory synaptic activity in response to 1 sec trains of 20 Hz stimulation. Although evoked phasic release was attenuated by repeated stimuli, asynchronous (miniature like) release continued at a high rate equivalent to approximately 2.8 readily releasable pools (RRPs) of quanta/sec. Asynchronous release reflected the recovery and immediate release of quanta because it was resistant to sucrose-induced depletion of the RRP. Asynchronous and phasic release appeared to compete for a common limited supply of release-ready quanta because agents that block asynchronous release, such as EGTA-AM, led to enhanced steady-state phasic release, whereas prolongation of the asynchronous release time course by LiCl delayed recovery of phasic release from depression. Modeling suggested that the resistance of asynchronous release to depression was associated with its ability to out-compete phasic release for recovered quanta attributable to its relatively low release rate (up to 0.04/msec per vesicle) stimulated by bulk intracellular Ca2+ concentration ([Ca2+]i) that could function over prolonged intervals between successive stimuli. Although phasic release was associated with a considerably higher peak rate of release (0.4/msec per vesicle), the [Ca2+]i microdomains that trigger it are brief (1 msec), and with asynchronous release present, relatively few quanta can accumulate within the RRP to be available for phasic release. We conclude that despite depression of phasic release during train stimulation, transmission can be maintained at a near-maximal rate by switching to an asynchronous mode that takes advantage of a bulk presynaptic [Ca2+]i
- …