143 research outputs found
Creation Or Evolution
https://digitalcommons.acu.edu/crs_books/1481/thumbnail.jp
Modulation of Corneal Fibroblast Contractility within Fibrillar Collagen Matrices
PURPOSE. To investigate the migratory and contractile behavior of isolated human corneal fibroblasts in fibrillar collagen matrices. METHODS. A telomerase-infected, extended-lifespan human corneal fibroblast cell line (HTK) was transfected by using a vector for enhanced green fluorescent protein (GFP)-α-actinin. Cells were plated at low density on top of or within 100-μm-thick fibrillar collagen lattices. After 18 hours to 7 days, time-lapse imaging was performed. At each 1- to 3-minute interval, GFP and Nomarski differential interference contrast (DIC) images were acquired in rapid succession. Serum-containing (S+) medium was used initially for perfusion. After 2 hours, perfusion was switched to either serum-free (S-) or S+ medium containing the Rho-kinase inhibitor Y-27632 for 1 to 2 hours. Finally, perfusion was changed back to S+ medium for 1 hour. RESULTS. Two to 4 days after plating, many cells underwent spontaneous contraction and/or relaxation in S+ medium. A decrease in the distance between consecutive α-actinin-dense bodies along stress fibers was measured during contraction, and focal adhesion and matrix displacements correlated significantly. Removal of serum or inhibition of Rho-kinase induced cell body elongation and relaxation of matrix stress, as confirmed using finite element modeling. Rapid formation and extension of pseudopodia and filopodia were also observed, and transient tractional forces were generated by these extending processes. CONCLUSIONS. Cultured human corneal fibroblasts can undergo rapid changes in the subcellular pattern of force generation that are mediated, in part, by Rho-kinase. Sarcomeric shortening of stress fibers in contracting corneal fibroblasts is also demonstrated for the first time
Exact microscopic theory of electromagnetic heat transfer between a dielectric sphere and plate
Near-field electromagnetic heat transfer holds great potential for the
advancement of nanotechnology. Whereas far-field electromagnetic heat transfer
is constrained by Planck's blackbody limit, the increased density of states in
the near-field enhances heat transfer rates by orders of magnitude relative to
the conventional limit. Such enhancement opens new possibilities in numerous
applications, including thermal-photo-voltaics, nano-patterning, and imaging.
The advancement in this area, however, has been hampered by the lack of
rigorous theoretical treatment, especially for geometries that are of direct
experimental relevance. Here we introduce an efficient computational strategy,
and present the first rigorous calculation of electromagnetic heat transfer in
a sphere-plate geometry, the only geometry where transfer rate beyond blackbody
limit has been quantitatively probed at room temperature. Our approach results
in a definitive picture unifying various approximations previously used to
treat this problem, and provides new physical insights for designing
experiments aiming to explore enhanced thermal transfer.Comment: 1 page title 8 page content 1 page references 2 page figure captions
4 page figure
Mapping of the alpha-actinin binding site within the beta 1 integrin cytoplasmic domain.
The actin cross-linking protein alpha-actinin binds to the cytoplasmic domain of the beta 1 subunit of integrin, suggesting that alpha-actinin may form a direct link between the actin cytoskeleton and the transmembrane fibronectin receptor. In this study, we have used short synthetic peptides to localize the binding site for alpha-actinin within the cytoplasmic domain of beta 1 integrin. Four 13-residue peptides were tested in both an affinity chromatographic assay and a solid-phase binding assay. The results indicated that two regions of sequence contribute to the binding of alpha-actinin: one near where the beta 1 cytoplasmic tail emerges from the membrane and a second segment located near the C terminus of the cytoplasmic tail. This binding pattern was investigated in more detail using an adaptation of the mimotope assay, in which each of the 32 overlapping sequential decapeptide segments from the beta 1 cytoplasmic domain was assembled on the head of a different plastic pin. The peptide-pin constructs were used to detect the binding of 125I-alpha-actinin. As predicted from our initial results, alpha-actinin was found to bind to two distinct clusters of peptide segments. This represents a novel use of the mimotope pin assay to map interactive sites on structural proteins
1938: Abilene Christian College Bible Lectures - Full Text
Delivered in the Auditorium of Abilene Christian College, February, 1938 Abilene, Texas.
Published October, 1939
PRICE, $1.00
FIRM FOUNDATION PUBLISHING HOUSE
Austin, Texas
In-Network Outlier Detection in Wireless Sensor Networks
To address the problem of unsupervised outlier detection in wireless sensor
networks, we develop an approach that (1) is flexible with respect to the
outlier definition, (2) computes the result in-network to reduce both bandwidth
and energy usage,(3) only uses single hop communication thus permitting very
simple node failure detection and message reliability assurance mechanisms
(e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data.
We examine performance using simulation with real sensor data streams. Our
results demonstrate that our approach is accurate and imposes a reasonable
communication load and level of power consumption.Comment: Extended version of a paper appearing in the Int'l Conference on
Distributed Computing Systems 200
Suppression of TGFβ-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo)fibroblasts via HDAC inhibition
Background: Cancer-associated fibroblasts (CAFs) support tumour progression and invasion, and they secrete abundant extracellular matrix (ECM) that may shield tumour cells from immune checkpoint or kinase inhibitors. Targeting CAFs using drugs that revert their differentiation, or inhibit their tumour-supportive functions, has been considered as an anti-cancer strategy. Methods: We have used human and murine cell culture models, atomic force microscopy (AFM), microarray analyses, CAF/tumour cell spheroid co-cultures and transgenic fibroblast reporter mice to study how targeting HDACs using small molecule inhibitors or siRNAs re-directs CAF differentiation and function in vitro and in vivo. Results: From a small molecule screen, we identified Scriptaid, a selective inhibitor of HDACs 1/3/8, as a repressor of TGFβ-mediated CAF differentiation. Scriptaid inhibits ECM secretion, reduces cellular contraction and stiffness, and impairs collective cell invasion in CAF/tumour cell spheroid co-cultures. Scriptaid also reduces CAF abundance and delays tumour growth in vivo. Conclusions: Scriptaid is a well-tolerated and effective HDACi that reverses many of the functional and phenotypic properties of CAFs. Impeding or reversing CAF activation/function by altering the cellular epigenetic regulatory machinery could control tumour growth and invasion, and be beneficial in combination with additional therapies that target cancer cells or immune cells directly
Revisiting the design intent concept in the context of mechanical CAD education
[EN] Design intent is generally understood simply as a CAD model¿s anticipated behavior when altered.
However, this representation provides a simplified view of the model¿s construction and purpose,
which may hinder its general understanding and future reusability. Our vision is that design intent
communication may be improved by recognizing the multifaceted nature of design intent, and by
instructing users to convey each facet of design intent through the better-fitted CAD resource. This
paper reviews the current understanding of design intent and its relationship to design rationale and
builds on the idea that communication of design intent conveyed via CAD models can be satisfied
at three levels provided that specialized instruction is used to instruct users in selection of the most
suitable level for each intent.Otey, J.; Company, P.; Contero, M.; Camba, J. (2018). Revisiting the design intent concept in the context of mechanical CAD education. Computer-Aided Design and Applications. 15(1):47-60. https://doi.org/10.1080/16864360.2017.1353733S476015
Evolution favors protein mutational robustness in sufficiently large populations
BACKGROUND: An important question is whether evolution favors properties such
as mutational robustness or evolvability that do not directly benefit any
individual, but can influence the course of future evolution. Functionally
similar proteins can differ substantially in their robustness to mutations and
capacity to evolve new functions, but it has remained unclear whether any of
these differences might be due to evolutionary selection for these properties.
RESULTS: Here we use laboratory experiments to demonstrate that evolution
favors protein mutational robustness if the evolving population is sufficiently
large. We neutrally evolve cytochrome P450 proteins under identical selection
pressures and mutation rates in populations of different sizes, and show that
proteins from the larger and thus more polymorphic population tend towards
higher mutational robustness. Proteins from the larger population also evolve
greater stability, a biophysical property that is known to enhance both
mutational robustness and evolvability. The excess mutational robustness and
stability is well described by existing mathematical theories, and can be
quantitatively related to the way that the proteins occupy their neutral
network.
CONCLUSIONS: Our work is the first experimental demonstration of the general
tendency of evolution to favor mutational robustness and protein stability in
highly polymorphic populations. We suggest that this phenomenon may contribute
to the mutational robustness and evolvability of viruses and bacteria that
exist in large populations
Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine
The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic resonance imaging (MRI) contrast agents sensitive to the neurotransmitter dopamine. The sensors were derived from the heme domain of the bacterial cytochrome P450-BM3 (BM3h). Ligand binding to a site near BM3h's paramagnetic heme iron led to a drop in MRI signal enhancement and a shift in optical absorbance. Using an absorbance-based screen, we evolved the specificity of BM3h away from its natural ligand and toward dopamine, producing sensors with dissociation constants for dopamine of 3.3–8.9 μM. These molecules were used to image depolarization-triggered neurotransmitter release from PC12 cells and in the brains of live animals. Our results demonstrate the feasibility of molecular-level functional MRI using neural activity–dependent sensors, and our protein engineering approach can be generalized to create probes for other targets.Charles A. Dana Foundation. Brain and Immuno-ImagingRaymond and Beverley Sackler FoundationNational Institutes of Health (U.S.) (grant R01-DA28299)National Institutes of Health (U.S.) (grant DP2-OD2441)National Institutes of Health (U.S.) (grant R01-GM068664)Jacobs Institute for Molecular Engineering for Medicine. Jacobs Institute for Molecular Engineering for MedicineNational Institutes of Health (U.S.) (grant R01-DE013023
- …