24 research outputs found

    Inactivation of spermidine N1-acetyltransferase with alkaline phosphatase

    Get PDF
    AbstractSpermidine N1-acetyltransferase in an extract from phytohemagglutinin-stimulated bovine lymphocytes was inactivated by preincubation with alkaline phosphatase. Inactivation of the acetylase with the phosphatase was totally inhibited by addition of pyrophosphate. These results suggest that spermidine N1-acetyltransferase, the rate-limiting enzyme in the biodegradative pathway of polyamines, is inactivated by dephosphorylation. A similar effect of alkaline phosphatase on the acetylase in an extract from Escherichia coli was also observed. The acetylase has a rapid rate of turnover and the rapid loss of the enzyme activity may be to some extent regulated by the covalent modification

    Phosphorus intake regulates intestinal function and polyamine metabolism in uremia

    Get PDF
    Phosphorus intake regulates intestinal function and polyamine metabolism in uremia. This study found that 5/6-nephrectomized uremic rats showed secondary hyperparathyroidism as reflected by an increase in their serum parathyroid hormone (PTH) level in association with a decrease in serum 1,25-dihydroxyvitamin D [1,25-(OH)2D]. These changes recovered partially upon phosphorus restriction. Calcium absorption and gene expression of calbindin-D9k were decreased in uremia and were also improved by phosphorus restriction. In uremia, intestinal spermidine/spermine N1-acetyl-transferase activity was decreased, while ornithine decarboxylase (ODC) activity and its gene expression were potentiated. Enhancement of c-fos and c-jun gene expressions was also observed in uremia. These phenomena suggest that the intestinal villus may proliferate in uremia. Phosphorus restriction prevented increases in the expression of ODC, c-fos and c-jun observed in uremia. Since phosphorus restriction caused a rise in the serum 1,25-(OH)2D level, the role of 1,25-(OH)2D in uremia-induced intestinal dysfunction was examined. A single injection of 1,25-(OH)2D3 to uremic rats caused an increase in the steady-state calbindin-D9k mRNA level, and decreases in steady state c-fos and ODC mRNA levels, suggesting that the deficiency of 1,25-(OH)2D3 is responsible for intestinal dysfunction in uremia. In conclusion, altered polyamine metabolism caused by 1,25-(OH)2D deficiency is intimately involved in intestinal dysfunction and the development of the proliferative state of the intestinal villus in uremia

    Review Article : Feudalism or Absolute Monarchism?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68809/2/10.1177_009770049001600304.pd
    corecore