9 research outputs found
Determination of the Chemical Composition of Lithium Niobate Powders
Existent methods for determining the composition of lithium niobate single crystals are mainly based on their variations due to changes in their electronic structure, which accounts for the fact that most of these methods rely on experimental techniques using light as the probe. Nevertheless, these methods used for single crystals fail in accurately predicting the chemical composition of lithium niobate powders due to strong scattering effects and randomness. In this work, an innovative method for determining the chemical composition of lithium niobate powders, based mainly on the probing of secondary thermodynamic phases by X-ray diffraction analysis and structure refinement, is employed. Its validation is supported by the characterization of several samples synthesized by the standard and inexpensive method of mechanosynthesis. Furthermore, new linear equations are proposed to accurately describe and determine the chemical composition of this type of powdered material. The composition can now be determined by using any of four standard characterization techniques: X-Ray Diffraction (XRD), Raman Spectroscopy (RS), UV-vis Diffuse Reflectance (DR), and Differential Thermal Analysis (DTA). In the case of the existence of a previous equivalent description for single crystals, a brief analysis of the literature is made
Structural and Magnetic Behavior of Oxidized and Reduced Fe Doped LiNbO3 Powders
Changes in structural and magnetic properties have been systematically induced in lithium niobate (LiNbO3) powders, Fe-doped with different concentrations and thermally treated in oxidized and reduced states. A rather strong ferromagnetic response at room temperature with a saturation magnetization of 0.96 Am2kg−1 was obtained for the higher utilized doping concentration, which is of the order of 1% mol. This may be considered a first report of the manifestation of ferromagnetism in nanocrystalline lithium niobate powders within the regime of very low Fe-doping concentrations. Post-thermal treatment in a controlled atmosphere is key for inducing and detecting this behavior, which can also be explained as the effective recombination of Fe impurities with oxygen vacancies in the surface of the material. Mechanochemical-calcination was employed for the synthesis of LiNbO3 powders and after that, a diffusion process of 0.44%, 0.89%, 1.47% and 2.20% mass of Fe2O3 was used in the Fe-doping. Oxidation and reduction processes were performed using a controlled atmosphere of ultra-high purity oxygen and hydrogen, respectively. X-ray diffraction and Raman spectroscopy were employed to characterize the materials. The magnetic properties were studied using Vibration Sample magnetometry and Electron Spin Resonance spectroscopy
Structural and Magnetic Behavior of Oxidized and Reduced Fe Doped LiNbO3 Powders
Changes in structural and magnetic properties have been systematically induced in lithium niobate (LiNbO 3) powders, Fe-doped with different concentrations and thermally treated in oxidized and reduced states. A rather strong ferromagnetic response at room temperature with a saturation magnetization of 0.96 Am 2 kg− 1 was obtained for the higher utilized doping concentration, which is of the order of 1% mol. This may be considered a first report of the manifestation of ferromagnetism in nanocrystalline lithium niobate powders within the regime of very low Fe-doping concentrations. Post-thermal treatment in a controlled atmosphere is key for inducing and detecting this behavior, which can also be explained as the effective recombination of Fe impurities with oxygen vacancies in the surface of the material. Mechanochemical-calcination was employed for the synthesis of LiNbO 3 powders and after that, a diffusion process of 0.44%, 0.89%, 1.47% and 2.20% mass of Fe 2 O 3 was used in the Fe-doping. Oxidation and reduction processes were performed using a controlled atmosphere of ultra-high purity oxygen and hydrogen, respectively. X-ray diffraction and Raman spectroscopy were employed to characterize the materials. The magnetic properties were studied using Vibration Sample magnetometry and Electron Spin Resonance spectroscopy
Polarization-resolved second harmonic generation from LiNbO3 powders
International audienceWe report a polarization-resolved analysis of the second harmonic intensity collected in retro-reflection from a Lithium Niobate microcrystals powder. Depth intensity profiles exhibit first an increase due to the beam focus entering the powder then a decrease due to multiple scattering. With a polarization analysis performed at selected depths, we show that there is a competition between ballistic and multiply scattered photons. The contribution from the multiply scattered photons dominates at all depths whereas, at the maximum of the intensity depth profiles, the contribution of the ballistic photons is at its maximum and enhanced due to collection efficiency. This latter contribution from the ballistic photons is clearly observed through distortions in the polarization-resolved plots
Al-Doped ZnO Thin Films with 80% Average Transmittance and 32 Ohms per Square Sheet Resistance: A Genuine Alternative to Commercial High-Performance Indium Tin Oxide
In this study, a low-sophistication low-cost spray pyrolysis system built by undergraduate students is used to grow aluminum-doped zinc oxide thin films (ZnO:Al). The pyrolysis system was able to grow polycrystalline ZnO:Al with a hexagonal wurtzite structure preferentially oriented on the c-axis, corresponding to a hexagonal wurtzite structure, and exceptional reproducibility. The ZnO:Al films were studied as transparent conductive oxides (TCOs). Our best ZnO:Al TCO are found to exhibit an 80% average transmittance in the visible range of the electromagnetic spectrum, a sheet resistance of 32 Ω/□, and an optical bandgap of 3.38 eV. After an extensive optical and nanostructural characterization, we determined that the TCOs used are only 4% less efficient than the best ZnO:Al TCOs reported in the literature. This latter, without neglecting that literature-ZnO:Al TCOs, have been grown by sophisticated deposition techniques such as magnetron sputtering. Consequently, we estimate that our ZnO:Al TCOs can be considered an authentic alternative to high-performance aluminum-doped zinc oxide or indium tin oxide TCOs grown through more sophisticated equipment
Lithium Niobate Single Crystals and Powders Reviewed—Part I
A review of lithium niobate single crystals and polycrystals in the form of powders has been prepared. Both the classical and recent literature on this topic are revisited. It is composed of two parts with sections. The current part discusses the earliest developments in this field. It treats in detail the basic concepts, the crystal structure, some of the established indirect methods to determine the chemical composition, and the main mechanisms that lead to the manifestation of ferroelectricity. Emphasis has been put on the powdered version of this material: methods of synthesis, the accurate determination of its chemical composition, and its role in new and potential applications are discussed. Historical remarks can be found scattered throughout this contribution. Particularly, an old conception of the crystal structure thought as a derivative structure from one of higher symmetry by generalized distortion is here revived
ZnO Films from Thermal Oxidation of Zn Films: Effect of the Thickness of the Precursor Films on the Structural, Morphological, and Optical Properties of the Products
Zinc oxide (ZnO) films with different structural, morphological, and optical properties were obtained by (fixed) thermal oxidation of deposited metallic zinc (Zn) films. The main characteristics of the oxidized films are discussed in terms of the Zn film thickness. On-axis preferential crystallographic oriented growth of ZnO can be tuned based on the control of the thickness of the deposited Zn: c-axis (a-axis) for the thinnest (thicker) Zn film. The thicker ZnO film is rather a-textured, whereas the grains hosted by the ZnO films corresponding to the Zn films of intermediate thicknesses are more randomly oriented. For Zn films of ever-increasing thickness, a tendency towards the crystallization of larger ZnO nanocrystals holds, combined with a continuous increment on the surface roughness. In contrast, the fundamental bandgap of the resultant oxide-based films decreases with thickness. The roughness of the ZnO films is not directly measured. It is qualitatively described by the analysis of Zn-film micrographs obtained by Scanning Electron Microscopy and by the demonstration of strong optical scattering interactions present in the thicker ZnO films by their random lasing activity
ZnO Films from Thermal Oxidation of Zn Films: Effect of the Thickness of the Precursor Films on the Structural, Morphological, and Optical Properties of the Products
Zinc oxide (ZnO) films with different structural, morphological, and optical properties were obtained by (fixed) thermal oxidation of deposited metallic zinc (Zn) films. The main characteristics of the oxidized films are discussed in terms of the Zn film thickness. On-axis preferential crystallographic oriented growth of ZnO can be tuned based on the control of the thickness of the deposited Zn: c-axis (a-axis) for the thinnest (thicker) Zn film. The thicker ZnO film is rather a-textured, whereas the grains hosted by the ZnO films corresponding to the Zn films of intermediate thicknesses are more randomly oriented. For Zn films of ever-increasing thickness, a tendency towards the crystallization of larger ZnO nanocrystals holds, combined with a continuous increment on the surface roughness. In contrast, the fundamental bandgap of the resultant oxide-based films decreases with thickness. The roughness of the ZnO films is not directly measured. It is qualitatively described by the analysis of Zn-film micrographs obtained by Scanning Electron Microscopy and by the demonstration of strong optical scattering interactions present in the thicker ZnO films by their random lasing activity