15 research outputs found

    Parallel Quantum Computing Emulation

    Full text link
    Quantum computers provide a fundamentally new computing paradigm that promises to revolutionize our ability to solve broad classes of problems. Surprisingly, the basic mathematical structures of gate-based quantum computing, such as unitary operations on a finite-dimensional Hilbert space, are not unique to quantum systems but may be found in certain classical systems as well. Previously, it has been shown that one can represent an arbitrary multi-qubit quantum state in terms of classical analog signals using nested quadrature amplitude modulated signals. Furthermore, using digitally controlled analog electronics one may manipulate these signals to perform quantum gate operations and thereby execute quantum algorithms. The computational capacity of a single signal is, however, limited by the required bandwidth, which scales exponentially with the number of qubits when represented using frequency-based encoding. To overcome this limitation, we introduce a method to extend this approach to multiple parallel signals. Doing so allows a larger quantum state to be emulated with the same gate time required for processing frequency-encoded signals. In the proposed representation, each doubling of the number of signals corresponds to an additional qubit in the spatial domain. Single quit gate operations are similarly extended so as to operate on qubits represented using either frequency-based or spatial encoding schemes. Furthermore, we describe a method to perform gate operations between pairs of qubits represented using frequency or spatial encoding or between frequency-based and spatially encoded qubits. Finally, we describe how this approach may be extended to represent qubits in the time domain as well.Comment: 9 pages, 4 figures, 2018 IEEE International Conference on Rebooting Computing (ICRC

    Near-Minimal Gate Set Tomography Experiment Designs

    Full text link
    Gate set tomography (GST) provides precise, self-consistent estimates of the noise channels for all of a quantum processor's logic gates. But GST experiments are large, involving many distinct quantum circuits. This has prevented their use on systems larger than two qubits. Here, we show how to streamline GST experiment designs by removing almost all redundancy, creating smaller and more scalable experiments without losing precision. We do this by analyzing the "germ" subroutines at the heart of GST circuits, identifying exactly what gate set parameters they are sensitive to, and leveraging this information to remove circuits that duplicate other circuits' sensitivities. We apply this technique to two-qubit GST experiments, generating streamlined experiment designs that contain only slightly more circuits than the theoretical minimum bounds, but still achieve Heisenberg-like scaling in precision (as demonstrated via simulation and a theoretical analysis using Fisher information). In practical use, the new experiment designs can match the precision of previous GST experiments with significantly fewer circuits. We discuss the prospects and feasibility of extending GST to three-qubit systems using our techniques.Comment: 11 pages, 6 figures, to be published in proceedings of 2023 IEEE International Conference on Quantum Computing and Engineering (QCE

    A Noncoherent Space-Time Code from Quantum Error Correction

    Full text link
    In this work, we develop a space-time block code for noncoherent communication using techniques from the field of quantum error correction. We decompose the multiple-input multiple-output (MIMO) channel into operators from quantum mechanics, and design a non-coherent space time code using the quantum stabilizer formalism. We derive an optimal decoder, and analyze the former through a quantum mechanical lens. We compare our approach to a comparable coherent approach and a noncoherent differential approach, achieving comparable or better performance.Comment: 6 pages, one figure, accepted at the 53rd annual Conference on Information Sciences and System

    Two-Qubit Gate Set Tomography with Fewer Circuits

    Full text link
    Gate set tomography (GST) is a self-consistent and highly accurate method for the tomographic reconstruction of a quantum information processor's quantum logic operations, including gates, state preparations, and measurements. However, GST's experimental cost grows exponentially with qubit number. For characterizing even just two qubits, a standard GST experiment may have tens of thousands of circuits, making it prohibitively expensive for platforms. We show that, because GST experiments are massively overcomplete, many circuits can be discarded. This dramatically reduces GST's experimental cost while still maintaining GST's Heisenberg-like scaling in accuracy. We show how to exploit the structure of GST circuits to determine which ones are superfluous. We confirm the efficacy of the resulting experiment designs both through numerical simulations and via the Fisher information for said designs. We also explore the impact of these techniques on the prospects of three-qubit GST.Comment: 46 pages, 13 figures. V2: Minor edits to acknowledgment

    Tomography of entangling two-qubit logic operations in exchange-coupled donor electron spin qubits

    Full text link
    Scalable quantum processors require high-fidelity universal quantum logic operations in a manufacturable physical platform. Donors in silicon provide atomic size, excellent quantum coherence and compatibility with standard semiconductor processing, but no entanglement between donor-bound electron spins has been demonstrated to date. Here we present the experimental demonstration and tomography of universal 1- and 2-qubit gates in a system of two weakly exchange-coupled electrons, bound to single phosphorus donors introduced in silicon by ion implantation. We surprisingly observe that the exchange interaction has no effect on the qubit coherence. We quantify the fidelity of the quantum operations using gate set tomography (GST), and we use the universal gate set to create entangled Bell states of the electrons spins, with fidelity ~ 93%, and concurrence 0.91 +/- 0.08. These results form the necessary basis for scaling up donor-based quantum computers

    Consistency of high-fidelity two-qubit operations in silicon

    Full text link
    The consistency of entangling operations between qubits is essential for the performance of multi-qubit systems, and is a crucial factor in achieving fault-tolerant quantum processors. Solid-state platforms are particularly exposed to inconsistency due to the materials-induced variability of performance between qubits and the instability of gate fidelities over time. Here we quantify this consistency for spin qubits, tying it to its physical origins, while demonstrating sustained and repeatable operation of two-qubit gates with fidelities above 99% in the technologically important silicon metal-oxide-semiconductor (SiMOS) quantum dot platform. We undertake a detailed study of the stability of these operations by analysing errors and fidelities in multiple devices through numerous trials and extended periods of operation. Adopting three different characterisation methods, we measure entangling gate fidelities ranging from 96.8% to 99.8%. Our analysis tools also identify physical causes of qubit degradation and offer ways to maintain performance within tolerance. Furthermore, we investigate the impact of qubit design, feedback systems, and robust gates on implementing scalable, high-fidelity control strategies. These results highlight both the capabilities and challenges for the scaling up of spin-based qubits into full-scale quantum processors
    corecore