111 research outputs found
HFrEF subphenotypes based on 4210 repeatedly measured circulating proteins are driven by different biological mechanisms
BACKGROUND:
HFrEF is a heterogenous condition with high mortality. We used serial assessments of 4210 circulating proteins to identify distinct novel protein-based HFrEF subphenotypes and to investigate underlying dynamic biological mechanisms. Herewith we aimed to gain pathophysiological insights and fuel opportunities for personalised treatment.
METHODS:
In 382 patients, we performed trimonthly blood sampling during a median follow-up of 2.1 [IQR:1.1–2.6] years. We selected all baseline samples and two samples closest to the primary endpoint (PEP; composite of cardiovascular mortality, HF hospitalization, LVAD implantation, and heart transplantation) or censoring, and applied an aptamer-based multiplex proteomic approach. Using unsupervised machine learning methods, we derived clusters from 4210 repeatedly measured proteomic biomarkers. Sets of proteins that drove cluster allocation were analysed via an enrichment analysis. Differences in clinical characteristics and PEP occurrence were evaluated.
FINDINGS:
We identified four subphenotypes with different protein profiles, prognosis and clinical characteristics, including age (median [IQR] for subphenotypes 1–4, respectively:70 [64, 76], 68 [60, 79], 57 [47, 65], 59 [56, 66]years), EF (30 [26, 36], 26 [20, 38], 26 [22, 32], 33 [28, 37]%), and chronic renal failure (45%, 65%, 36%, 37%). Subphenotype allocation was driven by subsets of proteins associated with various biological functions, such as oxidative stress, inflammation and extracellular matrix organisation. Clinical characteristics of the subphenotypes were aligned with these associations. Subphenotypes 2 and 3 had the worst prognosis compared to subphenotype 1 (adjHR (95%CI):3.43 (1.76–6.69), and 2.88 (1.37–6.03), respectively).
INTERPRETATION:
Four circulating-protein based subphenotypes are present in HFrEF, which are driven by varying combinations of protein subsets, and have different clinical characteristics and prognosis.
CLINICAL TRIAL REGISTRATION:
ClinicalTrials.gov Identifier: NCT01851538 https://clinicaltrials.gov/ct2/show/NCT01851538. Funding: EU/ EFPIA IMI2JU BigData@Heart grant n° 116074, Jaap Schouten Foundation and Noordwest Academie
Validation of a blood protein signature for non-small cell lung cancer
Background: CT screening for lung cancer is effective in reducing mortality, but there are areas of concern, including a positive predictive value of 4% and development of interval cancers. A blood test that could manage these limitations would be useful, but development of such tests has been impaired by variations in blood collection that may lead to poor reproducibility across populations. Results: Blood-based proteomic profiles were generated with SOMAscan technology, which measured 1033 proteins. First, preanalytic variability was evaluated with Sample Mapping Vectors (SMV), which are panels of proteins that detect confounders in protein levels related to sample collection. A subset of well collected serum samples not influenced by preanalytic variability was selected for discovery of lung cancer biomarkers. The impact of sample collection variation on these candidate markers was tested in the subset of samples with higher SMV scores so that the most robust markers could be used to create disease classifiers. The discovery sample set (n = 363) was from a multi-center study of 94 non-small cell lung cancer (NSCLC) cases and 269 long-term smokers and benign pulmonary nodule controls. The analysis resulted in a 7-marker panel with an AUC of 0.85 for all cases (68% adenocarcinoma, 32% squamous) and an AUC of 0.93 for squamous cell carcinoma in particular. This panel was validated by making blinded predictions in two independent cohorts (n = 138 in the first validation and n = 135 in the second). The model was recalibrated for a panel format prior to unblinding the second cohort. The AUCs overall were 0.81 and 0.77, and for squamous cell tumors alone were 0.89 and 0.87. The estimated negative predictive value for a 15% disease prevalence was 93% overall and 99% for squamous lung tumors. The proteins in the classifier function in destruction of the extracellular matrix, metabolic homeostasis and inflammation. Conclusions: Selecting biomarkers resistant to sample processing variation led to robust lung cancer biomarkers that performed consistently in independent validations. They form a sensitive signature for detection of lung cancer, especially squamous cell histology. This non-invasive test could be used to improve the positive predictive value of CT screening, with the potential to avoid invasive evaluation of nonmalignant pulmonary nodules
Aptamer-based multiplexed proteomic technology for biomarker discovery
Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine
Local Spatial and Temporal Processes of Influenza in Pennsylvania, USA: 2003–2009
Background: Influenza is a contagious respiratory disease responsible for annual seasonal epidemics in temperate climates. An understanding of how influenza spreads geographically and temporally within regions could result in improved public health prevention programs. The purpose of this study was to summarize the spatial and temporal spread of influenza using data obtained from the Pennsylvania Department of Health's influenza surveillance system. Methodology and Findings: We evaluated the spatial and temporal patterns of laboratory-confirmed influenza cases in Pennsylvania, United States from six influenza seasons (2003-2009). Using a test of spatial autocorrelation, local clusters of elevated risk were identified in the South Central region of the state. Multivariable logistic regression indicated that lower monthly precipitation levels during the influenza season (OR = 0.52, 95% CI: 0.28, 0.94), fewer residents over age 64 (OR = 0.27, 95% CI: 0.10, 0.73) and fewer residents with more than a high school education (OR = 0.76, 95% CI: 0.61, 0.95) were significantly associated with membership in this cluster. In addition, time series analysis revealed a temporal lag in the peak timing of the influenza B epidemic compared to the influenza A epidemic. Conclusions: These findings illustrate a distinct spatial cluster of cases in the South Central region of Pennsylvania. Further examination of the regional transmission dynamics within these clusters may be useful in planning public health influenza prevention programs. © 2012 Stark et al
Circulating fibrinogen is a prognostic and predictive biomarker in malignant pleural mesothelioma.
Background:To investigate the clinical utility of pretreatment plasma fibrinogen levels in malignant pleural mesothelioma (MPM) patients.Methods:A retrospective multicenter study was performed in histologically proven MPM patients. All fibrinogen levels were measured at the time of diagnosis and clinical data were retrospectively collected after approval of the corresponding ethics committees.Results:In total, 176 MPM patients (mean age: 63.5 years+/-10.4 years, 38 females and 138 males) were analysed. Most patients (n=154, 87.5%) had elevated (>/=390 mg dl-1) plasma fibrinogen levels. When patients were grouped by median fibrinogen, patients with low level (</=627 mg dl-1) had significantly longer overall survival (OS) (19.1 months, confidence interval (CI) 14.5-23.7 months) when compared with those with high level (OS 8.5; CI 6.2-10.7 months). In multivariate survival analyses, fibrinogen was found to be an independent prognostic factor (hazard ratio 1.81, CI 1.23-2.65). Most interestingly, fibrinogen (cutoff 75th percentile per 750 mg dl-1) proved to be a predictive biomarker indicating treatment benefit achieved by surgery within multimodality therapy (interaction term: P=0.034). Accordingly, only patients below the 75th percentile benefit from surgery within multimodality therapy (31.3 vs 5.3 months OS).Conclusions:Fibrinogen is a novel independent prognostic biomarker in MPM. Most importantly, fibrinogen predicted treatment benefit achieved by surgery within multimodality therapy.British Journal of Cancer advance online publication, 16 January 2014; doi:10.1038/bjc.2013.815 www.bjcancer.com
Protein Signature of Lung Cancer Tissues
Lung cancer remains the most common cause of cancer-related mortality. We applied a highly multiplexed proteomic technology (SOMAscan) to compare protein expression signatures of non small-cell lung cancer (NSCLC) tissues with healthy adjacent and distant tissues from surgical resections. In this first report of SOMAscan applied to tissues, we highlight 36 proteins that exhibit the largest expression differences between matched tumor and non-tumor tissues. The concentrations of twenty proteins increased and sixteen decreased in tumor tissue, thirteen of which are novel for NSCLC. NSCLC tissue biomarkers identified here overlap with a core set identified in a large serum-based NSCLC study with SOMAscan. We show that large-scale comparative analysis of protein expression can be used to develop novel histochemical probes. As expected, relative differences in protein expression are greater in tissues than in serum. The combined results from tissue and serum present the most extensive view to date of the complex changes in NSCLC protein expression and provide important implications for diagnosis and treatment
ProteinSeq: High-Performance Proteomic Analyses by Proximity Ligation and Next Generation Sequencing
Despite intense interest, methods that provide enhanced sensitivity and specificity in parallel measurements of candidate protein biomarkers in numerous samples have been lacking. We present herein a multiplex proximity ligation assay with readout via realtime PCR or DNA sequencing (ProteinSeq). We demonstrate improved sensitivity over conventional sandwich assays for simultaneous analysis of sets of 35 proteins in 5 µl of blood plasma. Importantly, we observe a minimal tendency to increased background with multiplexing, compared to a sandwich assay, suggesting that higher levels of multiplexing are possible. We used ProteinSeq to analyze proteins in plasma samples from cardiovascular disease (CVD) patient cohorts and matched controls. Three proteins, namely P-selectin, Cystatin-B and Kallikrein-6, were identified as putative diagnostic biomarkers for CVD. The latter two have not been previously reported in the literature and their potential roles must be validated in larger patient cohorts. We conclude that ProteinSeq is promising for screening large numbers of proteins and samples while the technology can provide a much-needed platform for validation of diagnostic markers in biobank samples and in clinical use
Evaluation of a novel real-time PCR test based on the ssrA gene for the identification of group B streptococci in vaginal swabs
<p>Abstract</p> <p>Background</p> <p>Despite the implementation of prevention guidelines, early-onset group B streptococci (GBS) disease remains a cause of neonatal morbidity and mortality worldwide. Strategies to identify women who are at risk of transmitting GBS to their infant and the administration of intrapartum antibiotics have greatly reduced the incidence of neonatal GBS disease. However, there is a requirement for a rapid diagnostic test for GBS that can be carried out in a labour ward setting especially for women whose GBS colonisation status is unknown at the time of delivery. We report the design and evaluation of a real-time PCR test (<it>RiboSEQ </it>GBS test) for the identification of GBS in vaginal swabs from pregnant women.</p> <p>Methods</p> <p>The qualitative real-time PCR <it>RiboSEQ </it>GBS test was designed based on the bacterial <it>ssrA </it>gene and incorporates a competitive internal standard control. The analytical sensitivity of the test was established using crude lysate extracted from serial dilutions of overnight GBS culture using the IDI Lysis kit. Specificity studies were performed using DNA prepared from a panel of GBS strains, related streptococci and other species found in the genital tract environment. The <it>RiboSEQ </it>GBS test was evaluated on 159 vaginal swabs from pregnant women and compared with the GeneOhmâ„¢ StrepB Assay and culture for the identification of GBS.</p> <p>Results</p> <p>The <it>RiboSEQ </it>GBS test is specific and has an analytical sensitivity of 1-10 cell equivalents. The <it>RiboSEQ </it>GBS test was 96.4% sensitive and 95.8% specific compared to "gold standard" culture for the identification of GBS in vaginal swabs from pregnant women. In this study, the <it>RiboSEQ </it>GBS test performed slightly better than the commercial BD GeneOhmâ„¢ StrepB Assay which gave a sensitivity of 94.6% and a specificity of 89.6% compared to culture.</p> <p>Conclusion</p> <p>The <it>RiboSEQ </it>GBS test is a valuable method for the rapid, sensitive and specific detection of GBS in pregnant women. This study also validates the <it>ssrA </it>gene as a suitable and versatile target for nucleic acid-based diagnostic tests for bacterial pathogens.</p
A Comprehensive Peptidome Profiling Technology for the Identification of Early Detection Biomarkers for Lung Adenocarcinoma
The mass spectrometry-based peptidomics approaches have proven its usefulness in several areas such as the discovery of physiologically active peptides or biomarker candidates derived from various biological fluids including blood and cerebrospinal fluid. However, to identify biomarkers that are reproducible and clinically applicable, development of a novel technology, which enables rapid, sensitive, and quantitative analysis using hundreds of clinical specimens, has been eagerly awaited. Here we report an integrative peptidomic approach for identification of lung cancer-specific serum peptide biomarkers. It is based on the one-step effective enrichment of peptidome fractions (molecular weight of 1,000–5,000) with size exclusion chromatography in combination with the precise label-free quantification analysis of nano-LC/MS/MS data set using Expressionist proteome server platform. We applied this method to 92 serum samples well-managed with our SOP (standard operating procedure) (30 healthy controls and 62 lung adenocarcinoma patients), and quantitatively assessed the detected 3,537 peptide signals. Among them, 118 peptides showed significantly altered serum levels between the control and lung cancer groups (p<0.01 and fold change >5.0). Subsequently we identified peptide sequences by MS/MS analysis and further assessed the reproducibility of Expressionist-based quantification results and their diagnostic powers by MRM-based relative-quantification analysis for 96 independently prepared serum samples and found that APOA4 273–283, FIBA 5–16, and LBN 306–313 should be clinically useful biomarkers for both early detection and tumor staging of lung cancer. Our peptidome profiling technology can provide simple, high-throughput, and reliable quantification of a large number of clinical samples, which is applicable for diverse peptidome-targeting biomarker discoveries using any types of biological specimens
Variation in the COVID-19 infection-fatality ratio by age, time, and geography during the pre-vaccine era: a systematic analysis
Background The infection-fatality ratio (IFR) is a metric that quantifies the likelihood of an individual dying once infected with a pathogen. Understanding the determinants of IFR variation for COVID-19, the disease caused by the SARS-CoV-2 virus, has direct implications for mitigation efforts with respect to clinical practice, non-pharmaceutical interventions, and the prioritisation of risk groups for targeted vaccine delivery. The IFR is also a crucial parameter in COVID-19 dynamic transmission models, providing a way to convert a population's mortality rate into an estimate of infections.Methods We estimated age-specific and all-age IFR by matching seroprevalence surveys to total COVID-19 mortality rates in a population. The term total COVID-19 mortality refers to an estimate of the total number of deaths directly attributable to COVID-19. After applying exclusion criteria to 5131 seroprevalence surveys, the IFR analyses were informed by 2073 all-age surveys and 718 age-specific surveys (3012 age-specific observations). When seroprevalence was reported by age group, we split total COVID-19 mortality into corresponding age groups using a Bayesian hierarchical model to characterise the non-linear age pattern of reported deaths for a given location. To remove the impact of vaccines on the estimated IFR age pattern, we excluded age-specific observations of seroprevalence and deaths that occurred after vaccines were introduced in a location. We estimated age-specific IFR with a non-linear meta-regression and used the resulting age pattern to standardise all-age IFR observations to the global age distribution. All IFR observations were adjusted for baseline and waning antibody-test sensitivity. We then modelled age-standardised IFR as a function of time, geography, and an ensemble of 100 of the top-performing covariate sets. The covariates included seven clinical predictors (eg, age-standardised obesity prevalence) and two measures of health system performance. Final estimates for 190 countries and territories, as well as subnational locations in 11 countries and territories, were obtained by predicting age-standardised IFR conditional on covariates and reversing the age standardisation.Findings We report IFR estimates for April 15, 2020, to January 1, 2021, the period before the introduction of vaccines and widespread evolution of variants. We found substantial heterogeneity in the IFR by age, location, and time. Age-specific IFR estimates form a J shape, with the lowest IFR occurring at age 7 years (0-0023%, 95% uncertainty interval [UI] 0-0015-0-0039) and increasing exponentially through ages 30 years (0-0573%, 0-0418-0-0870), 60 years (1-0035%, 0-7002-1-5727), and 90 years (20-3292%, 14-6888-28-9754). The countries with the highest IFR on July 15, 2020, were Portugal (2-085%, 0-946-4-395), Monaco (1-778%, 1-265-2-915), Japan (1-750%, 1-302-2-690), Spain (1-710%, 0-991-2-718), and Greece (1-637%, 1-155-2-678). All-age IFR varied by a factor of more than 30 among 190 countries and territories.After age standardisation, the countries with the highest IFR on July 15, 2020, were Peru (0-911%, 0-636-1-538), Portugal (0-850%, 0-386-1-793), Oman (0-762%, 0-381-1-399), Spain (0-751%, 0-435-1-193), and Mexico (0-717%, 0-426-1-404). Subnational locations with high IFRs also included hotspots in the UK and southern and eastern states of the USA. Sub-Saharan African countries and Asian countries generally had the lowest all-age and age-standardised IFRs. Population age structure accounted for 74% of logit-scale variation in IFRs estimated for 39 in-sample countries on July 15, 2020. A post-hoc analysis showed that high rates of transmission in the care home population might account for higher IFRs in some locations. Among all countries and territories, we found that the median IFR decreased from 0-466% (interquartile range 0-223-0-840) to 0-314% (0-143-0-551) between April 15, 2020, and Jan 1, 2021.Interpretation Estimating the IFR for global populations helps to identify relative vulnerabilities to COVID-19. Information about how IFR varies by age, time, and location informs clinical practice and non-pharmaceutical interventions like physical distancing measures, and underpins vaccine risk stratification. IFR and mortality risk form a J shape with respect to age, which previous research, such as that by Glynn and Moss in 2020, has identified to be a common pattern among infectious diseases. Understanding the experience of a population with COVID-19 mortality requires consideration for local factors; IFRs varied by a factor of more than 30 among 190 countries and territories in this analysis. In particular, the presence of elevated age-standardised IFRs in countries with well resourced health-care systems indicates that factors beyond health-care capacity are important. Potential extenuating circumstances include outbreaks among care home residents, variable burdens of severe cases, and the population prevalence of comorbid conditions that increase the severity of COVID-19 disease. During the pre-vaccine period, the estimated 33% decrease in median IFR over 8 months suggests that treatment for COVID-19 has improved over time. Estimating IFR for the pre-vaccine era provides an important baseline for describing the progression of COVID-19 mortality patterns.Funding Bill & Melinda Gates Foundation, J Stanton, T Gillespie, and J and E Nordstrom Copyright (c) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license
- …