51 research outputs found

    Sigma1 Targeting to Suppress Aberrant Androgen Receptor Signaling in Prostate Cancer.

    Get PDF
    Suppression of androgen receptor (AR) activity in prostate cancer by androgen depletion or direct AR antagonist treatment, although initially effective, leads to incurable castration-resistant prostate cancer (CRPC) via compensatory mechanisms including resurgence of AR and AR splice variant (ARV) signaling. Emerging evidence suggests that Sigma1 (also known as sigma-1 receptor) is a unique chaperone or scaffolding protein that contributes to cellular protein homeostasis. We reported previously that some Sigma1-selective small molecules can be used to pharmacologically modulate protein homeostasis pathways. We hypothesized that these Sigma1-mediated responses could be exploited to suppress AR protein levels and activity. Here we demonstrate that treatment with a small-molecule Sigma1 inhibitor prevented 5α- dihydrotestosterone-mediated nuclear translocation of AR and induced proteasomal degradation of AR and ARV, suppressing the transcriptional activity and protein levels of both full-length and splice-variant AR. Consistent with these data, RNAi knockdown of Sigma1 resulted in decreased AR levels and transcriptional activity. Furthermore, Sigma1 physically associated with ARV7 and A

    Global Patterns of Prostate Cancer Incidence, Aggressiveness, and Mortality in Men of African Descent

    Get PDF
    Prostate cancer (CaP) is the leading cancer among men of African descent in the USA, Caribbean, and Sub-Saharan Africa (SSA). The estimated number of CaP deaths in SSA during 2008 was more than five times that among African Americans and is expected to double in Africa by 2030. We summarize publicly available CaP data and collected data from the men of African descent and Carcinoma of the Prostate (MADCaP) Consortium and the African Caribbean Cancer Consortium (AC3) to evaluate CaP incidence and mortality in men of African descent worldwide. CaP incidence and mortality are highest in men of African descent in the USA and the Caribbean. Tumor stage and grade were highest in SSA. We report a higher proportion of T1 stage prostate tumors in countries with greater percent gross domestic product spent on health care and physicians per 100,000 persons. We also observed that regions with a higher proportion of advanced tumors reported lower mortality rates. This finding suggests that CaP is underdiagnosed and/or underreported in SSA men. Nonetheless, CaP incidence and mortality represent a significant public health problem in men of African descent around the world

    Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci.

    Get PDF
    BACKGROUND: Genome-wide association studies have identified multiple genetic variants associated with prostate cancer risk which explain a substantial proportion of familial relative risk. These variants can be used to stratify individuals by their risk of prostate cancer. METHODS: We genotyped 25 prostate cancer susceptibility loci in 40,414 individuals and derived a polygenic risk score (PRS). We estimated empirical odds ratios (OR) for prostate cancer associated with different risk strata defined by PRS and derived age-specific absolute risks of developing prostate cancer by PRS stratum and family history. RESULTS: The prostate cancer risk for men in the top 1% of the PRS distribution was 30.6 (95% CI, 16.4-57.3) fold compared with men in the bottom 1%, and 4.2 (95% CI, 3.2-5.5) fold compared with the median risk. The absolute risk of prostate cancer by age of 85 years was 65.8% for a man with family history in the top 1% of the PRS distribution, compared with 3.7% for a man in the bottom 1%. The PRS was only weakly correlated with serum PSA level (correlation = 0.09). CONCLUSIONS: Risk profiling can identify men at substantially increased or reduced risk of prostate cancer. The effect size, measured by OR per unit PRS, was higher in men at younger ages and in men with family history of prostate cancer. Incorporating additional newly identified loci into a PRS should improve the predictive value of risk profiles. IMPACT: We demonstrate that the risk profiling based on SNPs can identify men at substantially increased or reduced risk that could have useful implications for targeted prevention and screening programs.D F. Easton was recipient of the CR-UK grant C1287/A10118. R A. Eeles was recipient of the CR-UK grant C5047/A10692 and B E. Henderson was recipient of the NIH grant 1U19CA148537-01This is the author accepted manuscript. The final version is available via AACR at http://cebp.aacrjournals.org/content/early/2015/04/02/1055-9965.EPI-14-0317.long

    Fast and efficient QTL mapper for thousands of molecular phenotypes

    Get PDF
    In order to discover quantitative trait loci, multi-dimensional genomic datasets combining DNA-seq and ChiP-/RNA-seq require methods that rapidly correlate tens of thousands of molecular phenotypes with millions of genetic variants while appropriately controlling for multiple testing

    Identification, Replication, and Fine-Mapping of Loci Associated with Adult Height in Individuals of African Ancestry

    Get PDF
    Adult height is a classic polygenic trait of high heritability (h2 ∼0.8). More than 180 single nucleotide polymorphisms (SNPs), identified mostly in populations of European descent, are associated with height. These variants convey modest effects and explain ∼10% of the variance in height. Discovery efforts in other populations, while limited, have revealed loci for height not previously implicated in individuals of European ancestry. Here, we performed a meta-analysis of genome-wide association (GWA) results for adult height in 20,427 individuals of African ancestry with replication in up to 16,436 African Americans. We found two novel height loci (Xp22-rs12393627, P = 3.4×10−12 and 2p14-rs4315565, P = 1.2×10−8). As a group, height associations discovered in European-ancestry samples replicate in individuals of African ancestry (P = 1.7×10−4 for overall replication). Fine-mapping of the European height loci in African-ancestry individuals showed an enrichment of SNPs that are associated with expression of nearby genes when compared to the index European height SNPs (P<0.01). Our results highlight the utility of genetic studies in non-European populations to understand the etiology of complex human diseases and traits

    Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

    Get PDF
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction

    Characterizing Prostate Cancer Risk Through Multi-Ancestry Genome-Wide Discovery of 187 Novel Risk Variants

    Get PDF
    The transferability and clinical value of genetic risk scores (GRSs) across populations remain limited due to an imbalance in genetic studies across ancestrally diverse populations. Here we conducted a multi-ancestry genome-wide association study of 156,319 prostate cancer cases and 788,443 controls of European, African, Asian and Hispanic men, reflecting a 57% increase in the number of non-European cases over previous prostate cancer genome-wide association studies. We identified 187 novel risk variants for prostate cancer, increasing the total number of risk variants to 451. An externally replicated multi-ancestry GRS was associated with risk that ranged from 1.8 (per standard deviation) in African ancestry men to 2.2 in European ancestry men. The GRS was associated with a greater risk of aggressive versus non-aggressive disease in men of African ancestry (P = 0.03). Our study presents novel prostate cancer susceptibility loci and a GRS with effective risk stratification across ancestry groups

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Methodological Considerations in Estimation of Phenotype Heritability Using Genome-Wide SNP Data, Illustrated by an Analysis of the Heritability of Height in a Large Sample of African Ancestry Adults

    Get PDF
    Height has an extremely polygenic pattern of inheritance. Genome-wide association studies (GWAS) have revealed hundreds of common variants that are associated with human height at genome-wide levels of significance. However, only a small fraction of phenotypic variation can be explained by the aggregate of these common variants. In a large study of African-American men and women (n = 14,419), we genotyped and analyzed 966,578 autosomal SNPs across the entire genome using a linear mixed model variance components approach implemented in the program GCTA (Yang et al Nat Genet 2010), and estimated an additive heritability of 44.7% (se: 3.7%) for this phenotype in a sample of evidently unrelated individuals. While this estimated value is similar to that given by Yang et al in their analyses, we remain concerned about two related issues: (1) whether in the complete absence of hidden relatedness, variance components methods have adequate power to estimate heritability when a very large number of SNPs are used in the analysis; and (2) whether estimation of heritability may be biased, in real studies, by low levels of residual hidden relatedness. We addressed the first question in a semi-analytic fashion by directly simulating the distribution of the score statistic for a test of zero heritability with and without low levels of relatedness. The second question was addressed by a very careful comparison of the behavior of estimated heritability for both observed (self-reported) height and simulated phenotypes compared to imputation R2 as a function of the number of SNPs used in the analysis. These simulations help to address the important question about whether today's GWAS SNPs will remain useful for imputing causal variants that are discovered using very large sample sizes in future studies of height, or whether the causal variants themselves will need to be genotyped de novo in order to build a prediction model that ultimately captures a large fraction of the variability of height, and by implication other complex phenotypes. Our overall conclusions are that when study sizes are quite large (5,000 or so) the additive heritability estimate for height is not apparently biased upwards using the linear mixed model; however there is evidence in our simulation that a very large number of causal variants (many thousands) each with very small effect on phenotypic variance will need to be discovered to fill the gap between the heritability explained by known versus unknown causal variants. We conclude that today's GWAS data will remain useful in the future for causal variant prediction, but that finding the causal variants that need to be predicted may be extremely laborious
    corecore