45 research outputs found
Divergent effects of DNMT3A and TET2 mutations on hematopoietic progenitor cell fitness
The DNA methylation regulators DNMT3A and TET2 are recurrently mutated in hematological disorders. Despite possessing antagonistic biochemical activities, loss-of-function murine models show overlapping phenotypes in terms of increased hematopoietic stem cell (HSC) fitness. Here, we directly compared the effects of these mutations on hematopoietic progenitor function and disease initiation. In contrast to Dnmt3a-null HSCs, which possess limitless self-renewal in vivo, Tet2-null HSCs unexpectedly exhaust at the same rate as control HSCs in serial transplantation assays despite an initial increase in self-renewal. Moreover, loss of Tet2 more acutely sensitizes hematopoietic cells to the addition of a common co-operating mutation (Flt
Galaxy Cluster Environments of Radio Sources
Using the Sloan Digital Sky Survey (SDSS) and the FIRST (Faint Images of the
Radio Sky at Twenty Centimeters) catalogs, we examined the optical environments
around double-lobed radio sources. Previous studies have shown that
multi-component radio sources exhibiting some degree of bending between
components are likely to be found in galaxy clusters. Often this radio emission
is associated with a cD-type galaxy at the center of a cluster. We
cross-correlated the SDSS and FIRST catalogs and measured the richness of the
cluster environments surrounding both bent and straight multi-component radio
sources. This led to the discovery and classification of a large number of
galaxy clusters out to a redshift of z ~ 0.5. We divided our sample into
smaller subgroups based on their optical and radio properties. We find that FR
I radio sources are more likely to be found in galaxy clusters than FR II
sources. Further, we find that bent radio sources are more often found in
galaxy clusters than non-bent radio sources. We also examined the environments
around single-component radio sources and find that single-component radio
sources are less likely to be associated with galaxy clusters than extended,
multi-component radio sources. Bent, visually-selected sources are found in
clusters or rich groups ~78% of the time. Those without optical hosts in SDSS
are likely associated with clusters at even higher redshifts, most with
redshifts of z > 0.7.Comment: 47 pages, 24 figures. Accepted by A
Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases
Genetic studies have identified single nucleotide polymorphisms (SNPs) associated with the risk of prostate cancer (PC). It remains unclear whether such genetic variants are associated with disease aggressiveness. The NCI-SPORE Genetics Working Group retrospectively collected clinicopathologic information and genotype data for 36 SNPs which at the time had been validated to be associated with PC risk from 25,674 cases with PC. Cases were grouped according to race, Gleason score (Gleason ≤ 6, 7, ≥ 8) and aggressiveness (non-aggressive, intermediate, and aggressive disease). Statistical analyses were used to compare the frequency of the SNPs between different disease cohorts. After adjusting for multiple testing, only PC-risk SNP rs2735839 (G) was significantly and inversely associated with aggressive (OR = 0.77; 95 % CI 0.69-0.87) and high-grade disease (OR = 0.77; 95 % CI 0.68-0.86) in European men. Similar associations with aggressive (OR = 0.72; 95 % CI 0.58-0.89) and high-grade disease (OR = 0.69; 95 % CI 0.54-0.87) were documented in African-American subjects. The G allele of rs2735839 was associated with disease aggressiveness even at low PSA levels (<4.0 ng/mL) in both European and African-American men. Our results provide further support that a PC-risk SNP rs2735839 near the KLK3 gene on chromosome 19q13 may be associated with aggressive and high-grade PC. Future prospectively designed, case-case GWAS are needed to identify additional SNPs associated with PC aggressiveness
Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.
Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction
Dnmt3a Regulates T-cell Development and Suppresses T-ALL Transformation
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic neoplasm resulting from the malignant transformation of T-cell progenitors, and comprises approximately 15% and 25% of pediatric and adult ALL cases respectively. It is well-established that activating
NOTCH1
mutations are the major genetic lesions driving T-ALL in most patients, but efforts to develop targeted therapies against this pathway have produced limited success in decreasing leukemic burden and come with significant clinical side effects. A finer detailed understanding of the genetic and molecular mechanisms underlying T-ALL is required identify patients at increased risk for treatment failure and the development of precision medicine strategies. Generation of genetic models that more accurately reflect the normal developmental history of T-ALL are necessary to identify new avenues for treatment. The DNA methyltransferase enzyme
DNMT3A
is also recurrently mutated in T-ALL patients, and we show here that inactivation of
Dnmt3a
combined with
Notch1
gain-of-function leads to an aggressive T-ALL in mouse models. Moreover, conditional inactivation of
Dnmt3a
in mouse hematopoietic cells leads to an accumulation of immature progenitors in the thymus which are less apoptotic. These data demonstrate that Dnmt3a is required for normal T-cell development, and acts as a T-ALL tumor suppressor
Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells In Vivo
Summary: Somatic mutations in DNMT3A are recurrent events across a range of blood cancers. Dnmt3a loss of function in hematopoietic stem cells (HSCs) skews divisions toward self-renewal at the expense of differentiation. Moreover, DNMT3A mutations can be detected in the blood of aging individuals, indicating that mutant cells outcompete normal HSCs over time. It is important to understand how these mutations provide a competitive advantage to HSCs. Here we show that Dnmt3a-null HSCs can regenerate over at least 12 transplant generations in mice, far exceeding the lifespan of normal HSCs. Molecular characterization reveals that this in vivo immortalization is associated with gradual and focal losses of DNA methylation at key regulatory regions associated with self-renewal genes, producing a highly stereotypical HSC phenotype in which epigenetic features are further buttressed. These findings lend insight into the preponderance of DNMT3A mutations in clonal hematopoiesis and the persistence of mutant clones after chemotherapy. : Jeong et al. show that a single genetic manipulation, conditional inactivation of the DNA methyltransferase enzyme Dnmt3a, removes all inherent hematopoietic stem cell (HSC) self-renewal limits and replicative lifespan. Deletion of Dnmt3a allows HSCs to be propagated indefinitely in vivo. Keywords: DNMT3A, DNA methylation, HSC, self-renewal, leukemi
Identification of a prostate cancer susceptibility locus on chromosome 7q11–21 in Jewish families
Results from over a dozen prostate cancer susceptibility genome-wide scans, encompassing some 1,500 hereditary prostate cancer families, indicate that prostate cancer is an extremely heterogeneous disease with multiple loci contributing to overall susceptibility. In an attempt to reduce locus heterogeneity, we performed a genomewide linkage scan for prostate cancer susceptibility genes with 36 Jewish families, which represent a stratification of hereditary prostate cancer families with potentially increased locus homogeneity. The 36 Jewish families represent a combined dataset of 17 Jewish families from the Fred Hutchinson Cancer Research Center-based Prostate Cancer Genetic Research Study dataset and 19 Ashkenazi Jewish families collected at Johns Hopkins University. All available family members, including 94 affected men, were genotyped at markers distributed across the genome with an average interval of <10 centimorgans. Nonparametric multipoint linkage analyses were the primary approach, although parametric analyses were performed as well. Our strongest signal was a significant linkage peak at 7q11–21, with a nonparametric linkage (NPL) score of 3.01 (P = 0.0013). Simulations indicated that this corresponds to a genomewide empirical P = 0.006. All other regions had NPL P values ≥0.02. After genotyping additional markers within the 7q11–21 peak, the NPL score increased to 3.35 (P = 0.0004) at D7S634 with an allele-sharing logarithm of odds of 3.12 (P = 0.00007). These studies highlight the utility of analyzing defined sets of families with a common origin for reducing locus heterogeneity problems associated with studying complex traits