3 research outputs found

    Molecular risk stratification of medulloblastoma patients based on immunohistochemical analysis of MYC, LDHB, and CCNB1 expression.

    No full text
    PURPOSE: Medulloblastoma is the most common malignant embryonal brain tumor in children. The current clinical risk stratification to select treatment modalities is not optimal because it does not identify the standard-risk patients with resistant disease or the unknown number of high-risk patients who might be overtreated with current protocols. The aim of this study is to improve the risk stratification of medulloblastoma patients by using the expression of multiple prognostic markers in combination with current clinical parameters. EXPERIMENTAL DESIGN: Candidate prognostic markers were selected from literature or from medulloblastoma expression data. Selected genes were immunohistochemically analyzed for their prognostic value using medulloblastoma tissue arrays containing 124 well-characterized patient samples. RESULTS: Protein expression analyses showed that the combined expression of three genes was able to predict survival in medulloblastoma patients. Low MYC expression identified medulloblastoma patients with a very good outcome. In contrast, concomitant expression of LDHB and CCNB1 characterized patients with a very poor outcome. Multivariate analyses showed that both expression of MYC and the LDHB/CCNB1 gene signature were strong prognostic markers independent of the clinical parameters metastasis and residual disease. Combined analysis of clinical and molecular markers enabled greater resolution of disease risk than clinical factors alone. CONCLUSIONS: A molecular risk stratification model for medulloblastoma patients is proposed based on the signature of MYC, LDHB, and CCNB1 expression. Combined with clinical variables, the model may provide a more accurate basis for targeting therapy in children with this disease

    Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism

    Full text link
    The role of serotonin in prenatal and postnatal brain development is well documented in the animal literature. In earlier studies using positron emission tomography (PET) with the tracer alpha[11C]methyl‐l‐tryptophan (AMT), we reported global and focal abnormalities of serotonin synthesis in children with autism. In the present study, we measured brain serotonin synthesis in a large group of autistic children (n = 117) with AMT PET and related these neuroimaging data to handedness and language function. Cortical AMT uptake abnormalities were objectively derived from small homotopic cortical regions using a predefined cutoff asymmetry threshold (>2 S.D. of normal asymmetry). Autistic children demonstrated several patterns of abnormal cortical involvement, including right cortical, left cortical, and absence of abnormal asymmetry. Global brain values for serotonin synthesis capacity (unidirectional uptake rate constant, K‐complex) values were plotted as a function of age. K‐complex values of autistic children with asymmetry or no asymmetry in cortical AMT uptake followed different developmental patterns, compared to that of a control group of non‐autistic children. The autism groups, defined by presence or absence and side of cortical asymmetry, differed on a measure of language as well as handedness. Autistic children with left cortical AMT decreases showed a higher prevalence of severe language impairment, whereas those with right cortical decreases showed a higher prevalence of left and mixed handedness. Global as well as focal abnormally asymmetric development in the serotonergic system could lead to miswiring of the neural circuits specifying hemispheric specialization.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152797/1/jdnjijdevneu200408002.pd
    corecore