75 research outputs found
Epilepsy Center Characteristics and Geographic Region Influence Presurgical Testing in the United States
bjective
Persons with drugâresistant epilepsy may benefit from epilepsy surgery and should undergo presurgical testing to determine potential candidacy and appropriate intervention. Institutional expertise can influence use and availability of evaluations and epilepsy surgery candidacy. This census survey study aims to examine the influence of geographic region and other center characteristics on presurgical testing for medically intractable epilepsy. Methods
We analyzed annual report and supplemental survey data reported in 2020 from 206 adult epilepsy center directors and 136 pediatric epilepsy center directors in the United States. Test utilization data were compiled with annual center volumes, available resources, and US Census regional data. We used Wilcoxon rankâsum, KruskalâWallis, and chiâsquared tests for univariate analysis of procedure utilization. Multivariable modeling was also performed to assign odds ratios (ORs) of significant variables. Results
The response rate was 100% with individual element missingness \u3câ11% across 342 observations undergoing univariate analysis. A total of 278 complete observations were included in the multivariable models, and significant regional differences were present. For instance, compared to centers in the South, those in the Midwest used neuropsychological testing (OR = 2.87, 95% confidence interval [CI] =â1.2â6.86; p = .018) and fluorodeoxyglucoseâpositron emission tomography (OR = 2.74, 95% CI = =â1.14â6.61; p = .025) more commonly. For centers in the Northeast (OR = .46, 95% CI = .23â.93; p = .031) and West (OR = .41, 95% CI = .19â.87; p = .022), odds of performing singleâphoton emission computerized tomography were lower by nearly 50% compared to those in the South. Center accreditation level, demographics, volume, and resources were also associated with varying individual testing rates. Significance
Presurgical testing for drugâresistant epilepsy is influenced by US geographic region and other center characteristics. These findings have potential implications for comparing outcomes between US epilepsy centers and may inject disparities in access to surgical treatment
Association Between Characteristics of National Association of Epilepsy Centers and Reported Utilization of Specific Surgical Techniques
Background and Objective
Nearly one-third of persons with epilepsy will continue having seizures despite trialing multiple antiseizure medications. Epilepsy surgery may be beneficial in these cases, and evaluation at a comprehensive epilepsy center is recommended. Numerous palliative and potentially curative approaches exist, and types of surgery performed may be influenced by center characteristics. This article describes epilepsy center characteristics associated with epilepsy surgery access and volumes in the United States. Methods
We analyzed National Association of Epilepsy Centers 2019 annual report and supplemental survey data obtained with responses from 206 adult epilepsy center directors and 136 pediatric epilepsy center directors in the United States. Surgical treatment volumes were compiled with center characteristics, including US Census region. We used multivariable modeling with zero-inflated Poisson regression models to present ORs and incidence rate ratios of receiving a given surgery type based on center characteristics. Results
The response rate was 100% with individual element missingness less than 4% across 352 observations undergoing univariate analysis. Multivariable models included 319 complete observations. Significant regional differences were present. The rates of laser interstitial thermal therapy (LITT) were lower at centers in the Midwest (incidence rate ratio [IRR] 0.74, 95% CI 0.59â0.92; p = 0.006) and Northeast (IRR 0.77, 95% CI 0.61â0.96; p = 0.022) compared with those in the South. Conversely, responsive neurostimulation implantation rates were higher in the Midwest (IRR 1.45, 95% CI 1.1â1.91; p = 0.008) and West (IRR 1.91, 95% CI 1.49â2.44; p \u3c 0.001) compared with the South. Center accreditation level, institution type, demographics, and resources were also associated with variations in access and rates of potentially curative and palliative surgical interventions. Discussion
Epilepsy surgery procedure volumes are influenced by US epilepsy center region and other characteristics. These variations may affect access to specific surgical treatments for persons with drug resistant epilepsy across the United States
Post-zygotic rescue of meiotic errors causes brain mosaicism and focal epilepsy
Somatic mosaicism is a known cause of neurological disorders, including developmental brain malformations and epilepsy. Brain mosaicism is traditionally attributed to post-zygotic genetic alterations arising in fetal development. Here we describe post-zygotic rescue of meiotic errors as an alternate origin of brain mosaicism in patients with focal epilepsy who have mosaic chromosome 1q copy number gains. Genomic analysis showed evidence of an extra parentally derived chromosome 1q allele in the resected brain tissue from five of six patients. This copy number gain is observed only in patient brain tissue, but not in blood or buccal cells, and is strongly enriched in astrocytes. Astrocytes carrying chromosome 1q gains exhibit distinct gene expression signatures and hyaline inclusions, supporting a novel genetic association for astrocytic inclusions in epilepsy. Further, these data demonstrate an alternate mechanism of brain chromosomal mosaicism, with parentally derived copy number gain isolated to brain, reflecting rescue in other tissues during development
Post-Zygotic Rescue of Meiotic Errors Causes Brain Mosaicism and Focal Epilepsy
Somatic mosaicism is a known cause of neurological disorders, including developmental brain malformations and epilepsy. Brain mosaicism is traditionally attributed to post-zygotic genetic alterations arising in fetal development. Here we describe post-zygotic rescue of meiotic errors as an alternate origin of brain mosaicism in patients with focal epilepsy who have mosaic chromosome 1q copy number gains. Genomic analysis showed evidence of an extra parentally derived chromosome 1q allele in the resected brain tissue from five of six patients. This copy number gain is observed only in patient brain tissue, but not in blood or buccal cells, and is strongly enriched in astrocytes. Astrocytes carrying chromosome 1q gains exhibit distinct gene expression signatures and hyaline inclusions, supporting a novel genetic association for astrocytic inclusions in epilepsy. Further, these data demonstrate an alternate mechanism of brain chromosomal mosaicism, with parentally derived copy number gain isolated to brain, reflecting rescue in other tissues during development
Post-zygotic Rescue of Meiotic Errors Causes Brain Mosaicism and Focal Epilepsy
Somatic mosaicism is a known cause of neurological disorders, including developmental brain malformations and epilepsy. Brain mosaicism is traditionally attributed to post-zygotic genetic alterations arising in fetal development. Here we describe post-zygotic rescue of meiotic errors as an alternate origin of brain mosaicism in patients with focal epilepsy who have mosaic chromosome 1q copy number gains. Genomic analysis showed evidence of an extra parentally derived chromosome 1q allele in the resected brain tissue from five of six patients. This copy number gain is observed only in patient brain tissue, but not in blood or buccal cells, and is strongly enriched in astrocytes. Astrocytes carrying chromosome 1q gains exhibit distinct gene expression signatures and hyaline inclusions, supporting a novel genetic association for astrocytic inclusions in epilepsy. Further, these data demonstrate an alternate mechanism of brain chromosomal mosaicism, with parentally derived copy number gain isolated to brain, reflecting rescue in other tissues during development
Experimental Results and Integrated Modeling of Bacterial Growth on an Insoluble Hydrophobic Substrate (Phenanthrene)
Metabolism of a low-solubility substrate is limited by dissolution and availability and can hardly be determined. We developed a numerical model for simultaneously calculating dissolution kinetics of such substrates and their metabolism and microbial growth (Monod kinetics with decay) and tested it with three aerobic phenanthrene (PHE) degraders: Novosphingobium pentaromativorans US6-1, Sphingomonas sp. EPA505, and Sphingobium yanoikuyae B1. PHE was present as microcrystals, providing non-limiting conditions for growth. Total PHE and protein concentration were tracked over 6-12 days. The model was fitted to the test results for the rates of dissolution, metabolism, and growth. The strains showed similar efficiency, with v(max) values of 12-18 g dw g(-1) d(-1), yields of 0.21 g g(-1), maximum growth rates of 2.5-3.8 d(-1), and decay rates of 0.04-0.05 d(-1). Sensitivity analysis with the model shows that (i) retention in crystals or NAPLs or by sequestration competes with biodegradation, (ii) bacterial growth conditions (dissolution flux and resulting chemical activity of substrate) are more relevant for the final state of the system than the initial biomass, and (iii) the desorption flux regulates the turnover in the presence of solid-state, sequestered (aged), or NAPL substrate sources
Rangeland Condition Monitoring: A New Approach Using Cross-Fence Comparisons of Remotely Sensed Vegetation.
A need exists in arid rangelands for effective monitoring of the impacts of grazing management on vegetation cover. Monitoring methods which utilize remotely-sensed imagery may have comprehensive spatial and temporal sampling, but do not necessarily control for spatial variation of natural variables, such as landsystem, vegetation type, soil type and rainfall. We use the inverse of the red band from Landsat TM satellite imagery to determine levels of vegetation cover in a 22,672 km(2) area of arid rangeland in central South Australia. We interpret this wealth of data using a cross-fence comparison methodology, allowing us to rank paddocks (fields) in the study region according to effectiveness of grazing management. The cross-fence comparison methodology generates and solves simultaneous equations of the relationship between each paddock and all other paddocks, derived from pairs of cross-fence sample points. We compare this ranking from two image dates separated by six years, during which management changes are known to have taken place. Changes in paddock rank resulting from the cross-fence comparison method show strong correspondence to those predicted by grazing management in this region, with a significant difference between the two common management types; a change from full stocking rate to light 20% stocking regime (Major Stocking Reduction) and maintenance of full 100% stocking regime (Full Stocking Maintained) (P = 0.00000132). While no paddocks had a known increase in stocking rate during the study period, many had a reduction or complete removal in stock numbers, and many also experienced removals of pest species, such as rabbits, and other ecosystem restoration activities. These paddocks generally showed an improvement in rank compared to paddocks where the stocking regime remained relatively unchanged. For the first time, this method allows us to rank non-adjacent paddocks in a rangeland region relative to each other, while controlling for natural spatio-temporal variables such as rainfall, soil type, and vegetation community distributions, due to the nature of the cross-fence experimental design, and the spatially comprehensive data available in satellite imagery. This method provides a potential tool to aid land managers in decision making processes, particularly with regard to stocking rates
- âŠ