8 research outputs found

    Properties of Multidrug-Resistant Mutants Derived from Heterologous Expression Chassis Strain Streptomyces albidoflavus J1074

    Get PDF
    Streptomyces albidoflavus J1074 is a popular platform to discover novel natural products via the expression of heterologous biosynthetic gene clusters (BGCs). There is keen interest in improving the ability of this platform to overexpress BGCs and, consequently, enable the purification of specialized metabolites. Mutations within gene rpoB for the β-subunit of RNA polymerase are known to increase rifampicin resistance and augment the metabolic capabilities of streptomycetes. Yet, the effects of rpoB mutations on J1074 remained unstudied, and we decided to address this issue. A target collection of strains that we studied carried spontaneous rpoB mutations introduced in the background of the other drug resistance mutations. The antibiotic resistance spectra, growth, and specialized metabolism of the resulting mutants were interrogated using a set of microbiological and analytical approaches. We isolated 14 different rpoB mutants showing various degrees of rifampicin resistance; one of them (S433W) was isolated for the first time in actinomycetes. The rpoB mutations had a major effect on antibiotic production by J1074, as evident from bioassays and LC-MS data. Our data support the idea that rpoB mutations are useful tools to enhance the ability of J1074 to produce specialized metabolites

    Heterologous AdpA transcription factors enhance landomycin production in Streptomyces cyanogenus S136 under a broad range of growth conditions

    No full text
    Yushchuk O, Ostash I, Vlasiuk I, et al. Heterologous AdpA transcription factors enhance landomycin production in Streptomyces cyanogenus S136 under a broad range of growth conditions. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2018;102(19):8419-8428.Streptomyces cyanogenus S136 is the only known producer of landomycin A (LaA), one of the largest glycosylated angucycline antibiotics possessing strong antiproliferative properties. There is rising interest in elucidation of mechanisms of action of landomycins, which, in turn, requires access to large quantities of the pure compounds. Overproduction of LaA has been achieved in the past through manipulation of cluster-situated regulatory genes. However, other components of the LaA biosynthetic regulatory network remain unknown. To fill this gap, we elucidated the contribution of AdpA family pleiotropic regulators in landomycin production via expression of adpA genes of different origins in S. cyanogenus S136. Overexpression of the native S. cyanogenus S136 adpA ortholog had no effect on landomycin titers. In the same time, expression of several heterologous adpA genes led to significantly increased landomycin production under different cultivation conditions. Hence, heterologous adpA genes are a useful tool to enhance or activate landomycin production by S. cyanogenus. Our ongoing research effort is focused on identification of mutations that render S. cyanogenus AdpA nonfunctional

    Complete genome sequence of Streptomyces cyanogenus S136, producer of anticancer angucycline landomycin A

    No full text
    Hrab P, Rückert C, Busche T, et al. Complete genome sequence of Streptomyces cyanogenus S136, producer of anticancer angucycline landomycin A. 3 Biotech. 2021;11(6): 282 .Streptomyces cyanogenus S136 is the only known producer of landomycin A (LaA), one of the founding members of angucycline family of aromatic polyketides. LaA displays potent anticancer activities which has made this natural product a target of numerous chemical and cell biological studies. Little is known about the potential of S136 strain to produce other secondary metabolites. Here we report complete genome sequence of LaA producer and how we used this sequence to evaluate for this species its phylogenetic position and diversity of gene clusters for natural product biosynthesis.; Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-021-02834-4. © King Abdulaziz City for Science and Technology 2021

    Eliciting the silent lucensomycin biosynthetic pathway in Streptomyces cyanogenus S136 via manipulation of the global regulatory gene adpA

    No full text
    Actinobacteria are among the most prolific sources of medically and agriculturally important compounds, derived from their biosynthetic gene clusters (BGCs) for specialized (secondary) pathways of metabolism. Genomics witnesses that the majority of actinobacterial BGCs are silent, most likely due to their low or zero transcription. Much effort is put into the search for approaches towards activation of silent BGCs, as this is believed to revitalize the discovery of novel natural products. We hypothesized that the global transcriptional factor AdpA, due to its highly degenerate operator sequence, could be used to upregulate the expression of silent BGCs. Using Streptomyces cyanogenus S136 as a test case, we showed that plasmids expressing either full-length adpA or its DNA-binding domain led to significant changes in the metabolome. These were evident as changes in the accumulation of colored compounds, bioactivity, as well as the emergence of a new pattern of secondary metabolites as revealed by HPLC-ESI-mass spectrometry. We further focused on the most abundant secondary metabolite and identified it as the polyene antibiotic lucensomycin. Finally, we uncovered the entire gene cluster for lucensomycin biosynthesis (lcm), that remained elusive for five decades until now, and outlined an evidence-based scenario for its adpA-mediated activation.TU Berlin, Open-Access-Mittel – 202

    Mutations within gene XNR_2147 for TetR-like protein enhance lincomycin resistance and endogenous specialized metabolism of Streptomyces albus J1074

    No full text
    Tseduliak V-M, Dolia B, Ostash I, et al. Mutations within gene XNR_2147 for TetR-like protein enhance lincomycin resistance and endogenous specialized metabolism of Streptomyces albus J1074. Journal of Applied Genetics. 2022.Streptomyces albus J1074 is one of the most popular heterologous expression platforms among streptomycetes. Identification of new genes and mutations that influence specialized metabolism in this species is therefore of great applied interest. Here, we describe S. albus KO-1304 that was isolated as a spontaneous lincomycin-resistant variant of double rpsL(R94G)rsmG(R15SG40E) mutant KO-1295. Besides altered antibiotic resistance profile, KO-1304 exhibited increased antibiotic activity as compared to its parental strains. KO-1304 genome sequencing revealed mutations within gene XNR_2147 encoding putative TetR-like protein. Gene XNR_2146 for efflux protein is the most likely target of repressing action of Xnr_2147. Our data agree with the scenario where lincomycin resistance phenotype of KO-1304 arose from inability of mutated Xnr_2147 protein to repress XNR_2146. Introduction of additional copy of XNR_2146 into wild type strain increased antibiotic activity of the latter, attesting to the practical value of transporter genes for strain improvement

    Identification and characterization of the Streptomyces globisporus 1912 regulatory gene lndYR that affects sporulation and antibiotic production

    No full text
    Here, we report the identification and functional characterization of the Streptomyces globisporus 1912 gene lndYR, which encodes a GntR-like regulator of the YtrA subfamily. Disruption of lndYR arrested sporulation and antibiotic production in S. globisporus. The results of in vivo and in vitro studies revealed that the ABC transporter genes lndW–lndW2 are targets of LndYR repressive action. In Streptomyces coelicolor M145, lndYR overexpression caused a significant increase in the amount of extracellular actinorhodin. We suggest that lndYR controls the transcription of transport system genes in response to an as-yet-unidentified signal. Features that distinguish lndYR-based regulation from other known regulators are discussed
    corecore