76 research outputs found
Identification of a Small TAF Complex and Its Role in the Assembly of TAF-Containing Complexes
TFIID plays a role in nucleating RNA polymerase II preinitiation complex assembly on protein-coding genes. TFIID is a multisubunit complex comprised of the TATA box binding protein (TBP) and 14 TBP-associated factors (TAFs). Another class of multiprotein transcriptional regulatory complexes having histone acetyl transferase (HAT) activity, and containing TAFs, includes TFTC, STAGA and the PCAF/GCN5 complex. Looking for as yet undiscovered subunits by a proteomic approach, we had identified TAF8 and SPT7L in human TFTC preparations. Subsequently, however, we demonstrated that TAF8 was not a stable component of TFTC, but that it is present in a small TAF complex (SMAT), containing TAF8, TAF10 and SPT7L, that co-purified with TFTC. Thus, TAF8 is a subunit of both TFIID and SMAT. The latter has to be involved in a pathway of complex formation distinct from the other known TAF complexes, since these three histone fold (HF)-containing proteins (TAF8, TAF10 and SPT7L) can never be found together either in TFIID or in STAGA/TFTC HAT complexes. Here we show that TAF8 is absolutely necessary for the integration of TAF10 in a higher order TFIID core complex containing seven TAFs. TAF8 forms a heterodimer with TAF10 through its HF and proline rich domains, and also interacts with SPT7L through its C-terminal region, and the three proteins form a complex in vitro and in vivo. Thus, the TAF8-TAF10 and TAF10-SPT7L HF pairs, and also the SMAT complex, seem to be important regulators of the composition of different TFIID and/or STAGA/TFTC complexes in the nucleus and consequently may play a role in gene regulation
Regulation of Adipocyte 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) by CCAAT/Enhancer-Binding Protein (C/EBP) β Isoforms, LIP and LAP
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses intracellular regeneration of active glucocorticoids, notably in liver and adipose tissue. 11β-HSD1 is increased selectively in adipose tissue in human obesity, a change implicated in the pathogenesis of metabolic syndrome. With high fat (HF)-feeding, adipose tissue 11β-HSD1 is down-regulated in mice, plausibly to counteract metabolic disease. Transcription of 11β-HSD1 is directly regulated by members of the CCAAT/enhancer binding protein (C/EBP) family. Here we show that while total C/EBPβ in adipose tissue is unaltered by HF diet, the ratio of the C/EBPβ isoforms liver-enriched inhibitor protein (LIP) and liver-enriched activator protein (LAP) (C/EBPβ-LIP:LAP) is increased in subcutaneous adipose. This may cause changes in 11β-HSD1 expression since genetically modified C/EBPβ(+/L) mice, with increased C/EBPβ-LIP:LAP ratio, have decreased subcutaneous adipose 11β-HSD1 mRNA levels, whereas C/EBPβΔuORF mice, with decreased C/EBPβ-LIP:LAP ratio, show increased subcutaneous adipose 11β-HSD1. C/EBPβ-LIP:LAP ratio is regulated by endoplasmic reticulum (ER) stress and mTOR signalling, both of which are altered in obesity. In 3T3-L1 adipocytes, 11β-HSD1 mRNA levels were down-regulated following induction of ER stress by tunicamycin but were up-regulated following inhibition of mTOR by rapamycin. These data point to a central role for C/EBPβ and its processing to LIP and LAP in transcriptional regulation of 11β-HSD1 in adipose tissue. Down-regulation of 11β-HSD1 by increased C/EBPβ-LIP:LAP in adipocytes may be part of a nutrient-sensing mechanism counteracting nutritional stress generated by HF diet
CCAAT/enhancer binding proteins in normal mammary development and breast cancer
CCAAT/enhancer binding proteins (C/EBPs) are a family of leucine zipper, transcription factors that bind to DNA as homodimers and heterodimers. They regulate cellular proliferation, differentiation and apoptosis in the mammary gland. Multiple protein isoforms, including truncated, dominant negatives, are generated by translation of the C/EBPβ transcript or via proteolytic cleavage of the full-length C/EBPβ protein. Gene deletion of individual C/EBP family members has demonstrated an essential role for C/EBPβ in normal mammary development, while transgenic and overexpression studies provide evidence that the dominant-negative C/EBPβ-liver-enriched inhibitory protein isoform induces proliferation in mammary epithelial cells. Mounting evidence suggests that alterations in the ratio of the C/EBPβ-liver-enriched inhibitory protein isoform and the C/EBPβ-liver-enriched activating protein isoform may play a role in the development of breast cancer. This review will consequently focus on C/EBP actions in normal mammary development and on the emerging data that supports a role in breast cancer
Host hindrance to HIV-1 replication in monocytes and macrophages
Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types
- …