534 research outputs found

    Giant Leaps and Minimal Branes in Multi-Dimensional Flux Landscapes

    Full text link
    There is a standard story about decay in multi-dimensional flux landscapes: that from any state, the fastest decay is to take a small step, discharging one flux unit at a time; that fluxes with the same coupling constant are interchangeable; and that states with N units of a given flux have the same decay rate as those with -N. We show that this standard story is false. The fastest decay is a giant leap that discharges many different fluxes in unison; this decay is mediated by a 'minimal' brane that wraps the internal manifold and exhibits behavior not visible in the effective theory. We discuss the implications for the cosmological constant.Comment: Minor updates to agree with published version. 9 pages, 4 figure

    AN EXTENSION OF CERTAIN RESULTS IN FUNCTION THEORY TO A CLASS OF SURFACES

    Full text link

    Can one see the fundamental frequency of a drum?

    Full text link
    We establish two-sided estimates for the fundamental frequency (the lowest eigenvalue) of the Laplacian in an open subset G of R^n with the Dirichlet boundary condition. This is done in terms of the interior capacitary radius of G which is defined as the maximal possible radius of a ball B which has a negligible intersection with the complement of G. Here negligibility of a subset F in B means that the Wiener capacity of F does not exceed gamma times the capacity of B, where gamma is an arbitrarily fixed constant between 0 and 1. We provide explicit values of constants in the two-sided estimates.Comment: 18 pages, some misprints correcte

    Dynamical Belyi maps

    Full text link
    We study the dynamical properties of a large class of rational maps with exactly three ramification points. By constructing families of such maps, we obtain infinitely many conservative maps of degree dd; this answers a question of Silverman. Rather precise results on the reduction of these maps yield strong information on the rational dynamics.Comment: 21 page

    Electrostatic colloid-membrane complexation

    Full text link
    We investigate numerically and on the scaling level the adsorption of a charged colloid on an oppositely charged flexible membrane. We show that the long ranged character of the electrostatic interaction leads to a wrapping reentrance of the complex as the salt concentration is varied. The membrane wrapping depends on the size of the colloid and on the salt concentration and only for intermediate salt concentration and colloid sizes we find full wrapping. From the scaling model we derive simple relations for the phase boundaries between the different states of the complex, which agree well with the numerical minimization of the free energy.Comment: 7 page, 11 figure

    Solving the brachistochrone and other variational problems with soap films

    Full text link
    We show a method to solve the problem of the brachistochrone as well as other variational problems with the help of the soap films that are formed between two suitable surfaces. We also show the interesting connection between some variational problems of dynamics, statics, optics, and elasticity.Comment: 16 pages, 11 figures. This article, except for a small correction, has been submitted to the American Journal of Physic

    The shape of jamming arches in two-dimensional deposits of granular materials

    Full text link
    We present experimental results on the shape of arches that block the outlet of a two dimensional silo. For a range of outlet sizes, we measure some properties of the arches such as the number of particles involved, the span, the aspect ratio, and the angles between mutually stabilizing particles. These measurements shed light on the role of frictional tangential forces in arching. In addition, we find that arches tend to adopt an aspect ratio (the quotient between height and half the span) close to one, suggesting an isotropic load. The comparison of the experimental results with data from numerical models of the arches formed in the bulk of a granular column reveals the similarities of both, as well as some limitations in the few existing models.Comment: 8 pages; submitted to Physical Review

    Band structures of P-, D-, and G-surfaces

    Full text link
    We present a theoretical study on the band structures of the electron constrained to move along triply-periodic minimal surfaces. Three well known surfaces connected via Bonnet transformations, namely P-, D-, and G-surfaces, are considered. The six-dimensional algebra of the Bonnet transformations [C. Oguey and J.-F. Sadoc, J. Phys. I France 3, 839 (1993)] is used to prove that the eigenstates for these surfaces are interrelated at a set of special points in the Brillouin zones. The global connectivity of the band structures is, however, different due to the topological differences of the surfaces. A numerical investigation of the band structures as well as a detailed analysis on their symmetry properties is presented. It is shown that the presence of nodal lines are closely related to the symmetry properties. The present study will provide a basis for understanding further the connection between the topology and the band structures.Comment: 21 pages, 8 figures, 3 tables, submitted to Phys. Rev.

    Optimal time travel in the Godel universe

    Full text link
    Using the theory of optimal rocket trajectories in general relativity, recently developed in arXiv:1105.5235, we present a candidate for the minimum total integrated acceleration closed timelike curve in the Godel universe, and give evidence for its minimality. The total integrated acceleration of this curve is lower than Malament's conjectured value (Malament, 1984), as was already implicit in the work of Manchak (Manchak, 2011); however, Malament's conjecture does seem to hold for periodic closed timelike curves.Comment: 16 pages, 2 figures; v2: lower bound in the velocity and reference adde
    • …
    corecore