19 research outputs found

    The particle track reconstruction based on deep learning neural networks

    Full text link
    One of the most important problems of data processing in high energy and nuclear physics is the event reconstruction. Its main part is the track reconstruction procedure which consists in looking for all tracks that elementary particles leave when they pass through a detector among a huge number of points, so-called hits, produced when flying particles fire detector coordinate planes. Unfortunately, the tracking is seriously impeded by the famous shortcoming of multiwired, strip in GEM detectors due to the appearance in them a lot of fake hits caused by extra spurious crossings of fired strips. Since the number of those fakes is several orders of magnitude greater than for true hits, one faces with the quite serious difficulty to unravel possible track-candidates via true hits ignoring fakes. On the basis of our previous two-stage approach based on hits preprocessing using directed K-d tree search followed by a deep neural classifier we introduce here two new tracking algorithms. Both algorithms combine those two stages in one while using different types of deep neural nets. We show that both proposed deep networks do not require any special preprocessing stage, are more accurate, faster and can be easier parallelized. Preliminary results of our new approaches for simulated events are presented.Comment: 8 pages, 3 figures, CHEP 2018, the 23rd International Conference on Computing in High Energy and Nuclear Physics, Sofia, Bulgaria on July 9-13, 2018. arXiv admin note: text overlap with arXiv:1811.0600

    Two-Stage Approach to Image Classification by Deep Neural Networks

    Get PDF
    The paper demonstrates the advantages of the deep learning networks over the ordinary neural networks on their comparative applications to image classifying. An autoassociative neural network is used as a standalone autoencoder for prior extraction of the most informative features of the input data for neural networks to be compared further as classifiers. The main efforts to deal with deep learning networks are spent for a quite painstaking work of optimizing the structures of those networks and their components, as activation functions, weights, as well as the procedures of minimizing their loss function to improve their performances and speed up their learning time. It is also shown that the deep autoencoders develop the remarkable ability for denoising images after being specially trained. Convolutional Neural Networks are also used to solve a quite actual problem of protein genetics on the example of the durum wheat classification. Results of our comparative study demonstrate the undoubted advantage of the deep networks, as well as the denoising power of the autoencoders. In our work we use both GPU and cloud services to speed up the calculations

    Two-Stage Approach to Image Classification by Deep Neural Networks

    No full text
    The paper demonstrates the advantages of the deep learning networks over the ordinary neural networks on their comparative applications to image classifying. An autoassociative neural network is used as a standalone autoencoder for prior extraction of the most informative features of the input data for neural networks to be compared further as classifiers. The main efforts to deal with deep learning networks are spent for a quite painstaking work of optimizing the structures of those networks and their components, as activation functions, weights, as well as the procedures of minimizing their loss function to improve their performances and speed up their learning time. It is also shown that the deep autoencoders develop the remarkable ability for denoising images after being specially trained. Convolutional Neural Networks are also used to solve a quite actual problem of protein genetics on the example of the durum wheat classification. Results of our comparative study demonstrate the undoubted advantage of the deep networks, as well as the denoising power of the autoencoders. In our work we use both GPU and cloud services to speed up the calculations

    New Algorithm of Seed Finding for Track Reconstruction

    No full text
    Event reconstruction is a fundamental problem in the high energy physics experiments. It consists of track finding and track fitting procedures in the experiment tracking detectors. This requires a tremendous search of detector responses belonging to each track aimed at obtaining so-called “seeds”, i.e. initial approximations of track parameters of charged particles. In the paper we propose a new algorithm of the seedfinding procedure for the BM@N experiment

    Catch and Prolong: recurrent neural network for seeking track-candidates

    Get PDF
    One of the most important problems of data processing in high energy and nuclear physics is the event reconstruction. Its main part is the track reconstruction procedure which consists in looking for all tracks that elementary particles leave when they pass through a detector among a huge number of points, so-called hits, produced when flying particles fire detector coordinate planes. Unfortunately, the tracking is seriously impeded by the famous shortcoming of multiwired, strip and GEM detectors due to appearance in them a lot of fake hits caused by extra spurious crossings of fired strips. Since the number of those fakes is several orders of magnitude greater than for true hits, one faces with the quite serious difficulty to unravel possible track-candidates via true hits ignoring fakes. We introduce a renewed method that is a significant improvement of our previous two-stage approach based on hit preprocessing using directed K-d tree search followed a deep neural classifier. We combine these two stages in one by applying recurrent neural network that simultaneously determines whether a set of points belongs to a true track or not and predicts where to look for the next point of track on the next coordinate plane of the detector. We show that proposed deep network is more accurate, faster and does not require any special preprocessing stage. Preliminary results of our approach for simulated events of the BM@N GEM detector are presented

    Catch and Prolong: recurrent neural network for seeking track-candidates

    No full text
    One of the most important problems of data processing in high energy and nuclear physics is the event reconstruction. Its main part is the track reconstruction procedure which consists in looking for all tracks that elementary particles leave when they pass through a detector among a huge number of points, so-called hits, produced when flying particles fire detector coordinate planes. Unfortunately, the tracking is seriously impeded by the famous shortcoming of multiwired, strip and GEM detectors due to appearance in them a lot of fake hits caused by extra spurious crossings of fired strips. Since the number of those fakes is several orders of magnitude greater than for true hits, one faces with the quite serious difficulty to unravel possible track-candidates via true hits ignoring fakes. We introduce a renewed method that is a significant improvement of our previous two-stage approach based on hit preprocessing using directed K-d tree search followed a deep neural classifier. We combine these two stages in one by applying recurrent neural network that simultaneously determines whether a set of points belongs to a true track or not and predicts where to look for the next point of track on the next coordinate plane of the detector. We show that proposed deep network is more accurate, faster and does not require any special preprocessing stage. Preliminary results of our approach for simulated events of the BM@N GEM detector are presented

    BM@N Tracking with Novel Deep Learning Methods

    Get PDF
    Three deep tracking methods are presented for the BM@N experiment GEM track detector, which differ in their concepts. The first is a two-stage method with data preprocessing by a directional search in the k-d tree to find all possible candidates for tracks, and then use a deep recurrent neural network to classify them by true and ghost tracks. The second end-to-end method used a deep recurrent neural network to extrapolate the initial tracks, similar to the Kalman filter, which learns necessary parameters from the data. The third method implements our new attempt to adapt the neural graph network approach developed in the HEP.TrkX project at CERN to GEM-specific data. The results of applying these three methods to simulated events are presented

    BM@N Tracking with Novel Deep Learning Methods

    No full text
    Three deep tracking methods are presented for the BM@N experiment GEM track detector, which differ in their concepts. The first is a two-stage method with data preprocessing by a directional search in the k-d tree to find all possible candidates for tracks, and then use a deep recurrent neural network to classify them by true and ghost tracks. The second end-to-end method used a deep recurrent neural network to extrapolate the initial tracks, similar to the Kalman filter, which learns necessary parameters from the data. The third method implements our new attempt to adapt the neural graph network approach developed in the HEP.TrkX project at CERN to GEM-specific data. The results of applying these three methods to simulated events are presented

    The Particle Track Reconstruction based on deep Neural networks

    Get PDF
    One of the most important problems of data processing in high energy and nuclear physics is the event reconstruction. Its main part is the track reconstruction procedure which consists in looking for all tracks that elementary particles leave when they pass through a detector among a huge number of points, so-called hits, produced when flying particles fire detector coordinate planes. Unfortunately, the tracking is seriously impeded by the famous shortcoming of multiwired, strip in GEM detectors due to the appearance in them a lot of fake hits caused by extra spurious crossings of fired strips. Since the number of those fakes is several orders of magnitude greaterthan for true hits, one faces with the quite serious difficulty to unravelpossible track-candidates via true hits ignoring fakes. On the basis of our previous two-stage approach based on hits preprocessing using directed K-d tree search followed by a deep neural classifier we introduce here two new tracking algorithms. Both algorithms combine those two stages in one while using different types of deep neural nets. We show that both proposed deep networks do not require any special preprocessing stage, are more accurate, faster and can be easier parallelized. Preliminary results of our new approaches for simulated events are presented
    corecore