27 research outputs found

    Emerging role of quantitative imaging (radiomics) and artificial intelligence in precision oncology

    Get PDF
    Cancer is a fatal disease and the second most cause of death worldwide. Treatment of cancer is a complex process and requires a multi-modality-based approach. Cancer detection and treatment starts with screening/diagnosis and continues till the patient is alive. Screening/diagnosis of the disease is the beginning of cancer management and continued with the staging of the disease, planning and delivery of treatment, treatment monitoring, and ongoing monitoring and follow-up. Imaging plays an important role in all stages of cancer management. Conventional oncology practice considers that all patients are similar in a disease type, whereas biomarkers subgroup the patients in a disease type which leads to the development of precision oncology. The utilization of the radiomic process has facilitated the advancement of diverse imaging biomarkers that find application in precision oncology. The role of imaging biomarkers and artificial intelligence (AI) in oncology has been investigated by many researchers in the past. The existing literature is suggestive of the increasing role of imaging biomarkers and AI in oncology. However, the stability of radiomic features has also been questioned. The radiomic community has recognized that the instability of radiomic features poses a danger to the global generalization of radiomic-based prediction models. In order to establish radiomic-based imaging biomarkers in oncology, the robustness of radiomic features needs to be established on a priority basis. This is because radiomic models developed in one institution frequently perform poorly in other institutions, most likely due to radiomic feature instability. To generalize radiomic-based prediction models in oncology, a number of initiatives, including Quantitative Imaging Network (QIN), Quantitative Imaging Biomarkers Alliance (QIBA), and Image Biomarker Standardisation Initiative (IBSI), have been launched to stabilize the radiomic features

    Big data for better cancer care

    Get PDF

    Overall survival nomogram for patients with spinal bone metastases (SBM)

    No full text
    •Demographic features are essential for a more personalize survival prediction of spinal bone metastasis (SBM).•Women have a relatively better survival chance than men before 75 years, while men have better survival after this age.•SBM survival is not dependent on the number of spinal metastases.© 2021 The Authors. Published by Elsevier B.V. on behalf of European Society for Radiotherapy and Oncology

    Diving Deeper into Models

    No full text

    Radiomics biopsy signature for predicting survival in patients with spinal bone metastases (SBMs)

    No full text
    STUDY DESIGN: Retrospective analysis of a registered cohort of patients treated and irradiated for metastases in the spinal column in a single institute. OBJECTIVE: This is the first study to develop and internally validate radiomics features for predicting six-month survival probability for patients with spinal bone metastases (SBM). BACKGROUND DATA: Extracted radiomics features from routine clinical CT images can be used to identify textural and intensity-based features unperceivable to human observers and associate them with a patient survival probability or disease progression. METHODS: A study was conducted on 250 patients treated for metastases in the spinal column irradiated for the first time between 2014 and 2016, at the MAASTRO clinic in Maastricht, the Netherlands. The first 150 available patients were used to develop the model and the subsequent 100 patient were considered as a test set for the model. A bootstrap (B = 400) stepwise model selection, which combines both the forward and backward variable elimination procedure, was used to select the most useful predictive features from the training data based on the Akaike information criterion (AIC). The stepwise selection procedure was applied to the 400 bootstrap samples, and the results were plotted as a histogram to visualize how often each variable was selected. Only variables selected more than 90 % of the time over the bootstrap runs were used to build the final model. A prognostic index (PI) called radiomics score (radscore) and clinical score (clinscore) was calculated for each patient. The prognostic index was not scaled, the original values were used which can be extracted from the model directly or calculated as a linear combination of the variables in the model multiplied by the respective beta value for each patient. RESULTS: The clinical model had a good discrimination power. The radiomics model, on the other hand, had an inferior performance with no added predictive power to the clinical model. The internal imaging characteristics do not seem to have a value in the prediction of survival. However, the Shape features were excluded from further analyses in our study since all biopsies had a standard shape hence no variability

    Radiomics biopsy signature for predicting survival in patients with spinal bone metastases (SBMs)

    No full text
    Study design: Retrospective analysis of a registered cohort of patients treated and irradiated for metastases in the spinal column in a single institute. Objective: This is the first study to develop and internally validate radiomics features for predicting six-month survival probability for patients with spinal bone metastases (SBM). Background data: Extracted radiomics features from routine clinical CT images can be used to identify textural and intensity-based features unperceivable to human observers and associate them with a patient survival probability or disease progression. Methods: A study was conducted on 250 patients treated for metastases in the spinal column irradiated for the first time between 2014 and 2016, at the MAASTRO clinic in Maastricht, the Netherlands. The first 150 available patients were used to develop the model and the subsequent 100 patient were considered as a test set for the model. A bootstrap (B = 400) stepwise model selection, which combines both the forward and backward variable elimination procedure, was used to select the most useful predictive features from the training data based on the Akaike information criterion (AIC). The stepwise selection procedure was applied to the 400 bootstrap samples, and the results were plotted as a histogram to visualize how often each variable was selected. Only variables selected more than 90 % of the time over the bootstrap runs were used to build the final model.A prognostic index (PI) called radiomics score (radscore) and clinical score (clinscore) was calculated for each patient. The prognostic index was not scaled, the original values were used which can be extracted from the model directly or calculated as a linear combination of the variables in the model multiplied by the respective beta value for each patient. Results: The clinical model had a good discrimination power. The radiomics model, on the other hand, had an inferior performance with no added predictive power to the clinical model. The internal imaging characteristics do not seem to have a value in the prediction of survival. However, the Shape features were excluded from further analyses in our study since all biopsies had a standard shape hence no variability
    corecore