28 research outputs found
On Topological Properties of Wireless Sensor Networks under the q-Composite Key Predistribution Scheme with On/Off Channels
The q-composite key predistribution scheme [1] is used prevalently for secure
communications in large-scale wireless sensor networks (WSNs). Prior work
[2]-[4] explores topological properties of WSNs employing the q-composite
scheme for q = 1 with unreliable communication links modeled as independent
on/off channels. In this paper, we investigate topological properties related
to the node degree in WSNs operating under the q-composite scheme and the
on/off channel model. Our results apply to general q and are stronger than
those reported for the node degree in prior work even for the case of q being
1. Specifically, we show that the number of nodes with certain degree
asymptotically converges in distribution to a Poisson random variable, present
the asymptotic probability distribution for the minimum degree of the network,
and establish the asymptotically exact probability for the property that the
minimum degree is at least an arbitrary value. Numerical experiments confirm
the validity of our analytical findings.Comment: Best Student Paper Finalist in IEEE International Symposium on
Information Theory (ISIT) 201
On the strengths of connectivity and robustness in general random intersection graphs
Random intersection graphs have received much attention for nearly two
decades, and currently have a wide range of applications ranging from key
predistribution in wireless sensor networks to modeling social networks. In
this paper, we investigate the strengths of connectivity and robustness in a
general random intersection graph model. Specifically, we establish sharp
asymptotic zero-one laws for -connectivity and -robustness, as well as
the asymptotically exact probability of -connectivity, for any positive
integer . The -connectivity property quantifies how resilient is the
connectivity of a graph against node or edge failures. On the other hand,
-robustness measures the effectiveness of local diffusion strategies (that
do not use global graph topology information) in spreading information over the
graph in the presence of misbehaving nodes. In addition to presenting the
results under the general random intersection graph model, we consider two
special cases of the general model, a binomial random intersection graph and a
uniform random intersection graph, which both have numerous applications as
well. For these two specialized graphs, our results on asymptotically exact
probabilities of -connectivity and asymptotic zero-one laws for
-robustness are also novel in the literature.Comment: This paper about random graphs appears in IEEE Conference on Decision
and Control (CDC) 2014, the premier conference in control theor