4 research outputs found

    Local Optical Spectroscopy in Quantum Confined Systems: A Theoretical Description

    Get PDF
    A theoretical description of local absorption is proposed in order to investigate spectral variations on a length scale comparable with the extension of the relevant quantum states. A general formulation is derived within the density-matrix formalism including Coulomb correlation, and applied to the prototypical case of coupled quantum wires. The results show that excitonic effects may have a crucial impact on the local absorption with implications for the spatial resolution and the interpretation of near-field optical spectra.Comment: To appear in Phys. Rev. Lett. - 11 pages, 3 PostScript figures (1 figure in colors) embedded. Uses RevTex, and psfig style

    Local optical spectroscopy of semiconductor nanostructures in the linear regime

    Get PDF
    We present a theoretical approach to calculate the local absorption spectrum of excitons confined in a semiconductor nanostructure. Using the density-matrix formalism, we derive a microscopic expression for the nonlocal susceptibility, both in the linear and nonlinear regimes, which includes a three-dimensional description of electronic quantum states and their Coulomb interaction. The knowledge of the nonlocal susceptibility allows us to calculate a properly defined local absorbed power, which depends on the electromagnetic field distribution. We report on explicit calculations of the local linear response of excitons confined in single and coupled T-shaped quantum wires with realistic geometry and composition. We show that significant interference effects in the interacting electron-hole wave function induce new features in the space-resolved optical spectra, particularly in coupled nanostructures. When the spatial extension of the electromagnetic field is comparable to the exciton Bohr radius, Coulomb effects on the local spectra must be taken into account for a correct assignment of the observed features

    Diagnostic and therapeutic approach in adult patients with traumatic brain injury receiving oral anticoagulant therapy: an Austrian interdisciplinary consensus statement

    No full text
    corecore