12 research outputs found

    Growth of high quality ZnO thin films with a homonucleation on sapphire

    Get PDF
    ZnO thin films were epitaxially grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. A low temperature homonucleation ZnO layer was found crucial at the interfacial region to absorb the defects formed by the lattice mismatch between the sapphire and ZnO, resulting in a smooth surface that enables smooth 2D epitaxial growth. High quality ZnO films were achieved after careful optimization of critical growth conditions: the sequence of Zn and O source shutters, growth temperature for both the ZnO nucleation and growth layer, and Zn/O ratio. Oxygen plasma pretreatment was not applied prior to the growth, thus shortening the growth time and reducing oxidation of the metallic sources. Resultant epitaxial ZnO films on sapphire demonstrated a root-mean-square surface roughness of 0.373 nm for 1 mu m x 1 mu m atomic force microscope images with clear hexagonal structure and terrace steps. The x-ray diffraction full width at half maximum (FWHM) for omega and omega-2 theta ZnO (0002) triple-crystal rocking curves were measured to be 13 and 26 arc/s, respectively. This FWHM value is lower than any reported to date in the literature, with omega and omega-2 theta values indicating excellent coherence of the epitaxial layer along the interface and the growth direction, accordingly. These x-ray diffraction and surface roughness values are lower than those obtained using common nucleation layers such as MgO, indicating that growth with ZnO nucleation layers on sapphire may lead to higher quality electrical and optical devices

    Development of ZnMgCdO-Based Alloys and Heterostructures for Optical Applications

    Full text link
    This paper reviews of some of the recent progress made in the development of high quality MgZnO and ZnCdO layers grown epitaxially by RF-plasma molecular beam epitaxy (MBE). We summarize optical and electrical properties of high quality CdxZn1-xO alloys with Cd mole fraction from 0.02 to 0.78 and discuss phase separation phenomenon which may be present in ternary alloys. A single-crystal wurtzite structure of CdZnO alloys for this entire range of compositions was confirmed by X-ray diffraction. Compositional analysis was performed using SIMS and RBS. Strong optical emission in the 380 nm to 574 nm spectral range was achieved at RT from CdxZn1-xO with various compositions, demonstrating a great potential for use in LEDs. Compositional fluctuations in a Cd0.16Zn0.84O films were not detected by spatially resolved CL measurements, although intensity fluctuation with features of ~0.5 μm diameter were seen on the intensity maps. Dependence of the fundamental optical band gap on the composition of CdxZn1-xO alloys, band gap bowing, and the possible effect of composition micro-fluctuations in ternary CdxZn1-xO alloys on the optical bandgap is also discussed. Time resolved photoluminescence shows multi-exponential decay with 21 psec. and 49±3 psec. lifetimes, suggesting that composition micro-fluctuations may be present in Cd0.16Zn0.84O film. High conductivity and optical transparency of the CdZnO films with high Cd-mole fraction is attractive for making high performance electrodes. We also report on crystallographic and optical properties of CdZnO/ZnO multiple quantum wells (MQW)

    Development of ZnMgCdO-Based Alloys and Heterostructures for Optical Applications

    Full text link
    This paper reviews of some of the recent progress made in the development of high quality MgZnO and ZnCdO layers grown epitaxially by RF-plasma molecular beam epitaxy (MBE). We summarize optical and electrical properties of high quality CdxZn1-xO alloys with Cd mole fraction from 0.02 to 0.78 and discuss phase separation phenomenon which may be present in ternary alloys. A single-crystal wurtzite structure of CdZnO alloys for this entire range of compositions was confirmed by X-ray diffraction. Compositional analysis was performed using SIMS and RBS. Strong optical emission in the 380 nm to 574 nm spectral range was achieved at RT from CdxZn1-xO with various compositions, demonstrating a great potential for use in LEDs. Compositional fluctuations in a Cd0.16Zn0.84O films were not detected by spatially resolved CL measurements, although intensity fluctuation with features of ~0.5 μm diameter were seen on the intensity maps. Dependence of the fundamental optical band gap on the composition of CdxZn1-xO alloys, band gap bowing, and the possible effect of composition micro-fluctuations in ternary CdxZn1-xO alloys on the optical bandgap is also discussed. Time resolved photoluminescence shows multi-exponential decay with 21 psec. and 49±3 psec. lifetimes, suggesting that composition micro-fluctuations may be present in Cd0.16Zn0.84O film. High conductivity and optical transparency of the CdZnO films with high Cd-mole fraction is attractive for making high performance electrodes. We also report on crystallographic and optical properties of CdZnO/ZnO multiple quantum wells (MQW)

    Vertical Solar Blind Schottky Photodiode Based On Homoepitaxial Ga2O3 Thin Film

    Full text link
    High quality germanium doped β-Ga2O3 epitaxial film was grown by PMBE technique and fabricated into a vertical type Schottky photodiode with a Pt/nGa2O3/n+Ga2O3(010) structure. The photodiode exhibited excellent rectifying characteristics with a turn on voltage ∼ 1V and near zero bias leakage current ∼ 100 fA. The photoresponse measurement showed a true solar blind sensitivity with cutoff wavelength ∼260 nm and an out of band rejection ratio of ∼104. A maximum responsivity of 0.09 A/W at 230 nm was measured at zero bias, corresponding to an external quantum efficiency of ∼52 %. The time response of the photovoltaic diode is in the millisecond range and has no long-time decay component which is very common in the MSM photoconductive wide bandgap devices. The photodiode performance remains stable up to 300°C, suggesting its potential use for high temperature applications

    Temperature And Pulse Duration Effects On The Growth Of Mgzno Via Pulsed Metal Organic Chemical Vapor Deposition

    Full text link
    The effect of substrate temperature (TS) and pulse duration (PD) on Mg incorporation, surface quality, and photoresponse properties of MgZnO films grown via PMOCVD were studied. Films grown at TS ranging from 500 to 700 C but at identical PDs had band gaps varying from 3.38 to 3.87 eV, corresponDing to Mg content between x = 0.06 and 0.27. The film with Mg content of 0.27 was the smoothest and achieved at 630 Coptimal TS. Additionally, pulse time effect was studied by growing films at the same TS but different PDs. A film grown at PD of 12 s has incorporated \u3e40% higher Mg than one grown in a continuous mode (PDG1), indicting the cruciallity of PMOCVD to realize high Mg film. The peak response spectra of photodetectors were also varied with TS and PD, in accordance with Mg content in the films

    Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film

    Full text link
    We report on a high performance Pt/n−Ga2O3/n+Ga2O3 solar blind Schottky photodiode that has been grown by metalorganic chemical vapor deposition. The active area of the photodiode was fabricated using ∼30 Å thick semi-transparent Pt that has up to 90% transparency to UV radiation with wavelengths < 260 nm. The fabricated photodiode exhibited Schottky characteristics with a turn-on voltage of ∼1 V and a rectification ratio of ∼108 at ±2 V and showed deep UV solar blind detection at 0 V. The Schottky photodiode exhibited good device characteristics such as an ideality factor of 1.23 and a breakdown voltage of ∼110 V. The spectral response showed a maximum absolute responsivity of 0.16 A/W at 222 nm at zero bias corresponding to an external quantum efficiency of ∼87.5%. The cutoff wavelength and the out of band rejection ratio of the devices were ∼260 nm and ∼104, respectively, showing a true solar blind operation with an excellent selectivity. The time response is in the millisecond range and has no long-time decay component which is common in photoconductive wide bandgap devices

    ZnCdO/ZnMgO and ZnO/AlGaN Heterostructures for UV and Visible Light Emitters

    Full text link
    This paper reviews of some of the progress made in the development of ZnO-based light emitting diodes (LEDs). n-ZnO/p-AlGaN-based heterostructures have been successfully for the fabrication of UV emitting LEDs that have operated at temperatures up to 650K, suggesting an excitonic origin for the optical transitions. RF-plasma-assisted molecular beam epitaxy has been used to grow epitaxial CdxZn1-xO films on GaN/sapphire structure. These films have a single-crystal wurtzite structure as demonstrated by structural and compositional analysis. High quality CdxZn1-xO films were grown with up to x=0.78 mole fraction as determined by RBS and SIMS techniques. Optical emission ranging from purple (Cd0.05Zn0.95O) to yellow (Cd0.29Zn0.71O) was observed. Compositional fluctuations in a Cd0.16Zn0.84O films were not detected by spatially resolved CL measurements, although intensity fluctuation with features of ∼0.5 μm diameter were seen on the intensity maps. Time resolved photoluminescence shows multi-exponential decay with 21 psec. and 49±3 psec. lifetimes, suggesting that composition micro-fluctuations may be present in Cd0.16Zn0.84O film

    ZnCdO/ZnMgO and ZnO/AlGaN Heterostructures for UV and Visible Light Emitters

    Full text link
    This paper reviews of some of the progress made in the development of ZnO-based light emitting diodes (LEDs). n-ZnO/p-AlGaN-based heterostructures have been successfully for the fabrication of UV emitting LEDs that have operated at temperatures up to 650K, suggesting an excitonic origin for the optical transitions. RF-plasma-assisted molecular beam epitaxy has been used to grow epitaxial CdxZn1-xO films on GaN/sapphire structure. These films have a single-crystal wurtzite structure as demonstrated by structural and compositional analysis. High quality CdxZn1-xO films were grown with up to x=0.78 mole fraction as determined by RBS and SIMS techniques. Optical emission ranging from purple (Cd0.05Zn0.95O) to yellow (Cd0.29Zn0.71O) was observed. Compositional fluctuations in a Cd0.16Zn0.84O films were not detected by spatially resolved CL measurements, although intensity fluctuation with features of ∼0.5 μm diameter were seen on the intensity maps. Time resolved photoluminescence shows multi-exponential decay with 21 psec. and 49±3 psec. lifetimes, suggesting that composition micro-fluctuations may be present in Cd0.16Zn0.84O film
    corecore