39 research outputs found

    On-Site Bridge Inspection by 950 keV/3.95 MeV Portable X-Band Linac X-Ray Sources

    Get PDF
    Many bridges around the world face aging problems and degradation of structural strength. Visual and hammering sound inspections are under way, but the status of inner reinforced iron rods and prestressed concrete (PC) wires has not yet been confirmed. Establishing a diagnosis method for bridges based on X-ray visualization is required to evaluate the health of bridges accurately and to help with the rationalization of bridge maintenance. We developed 950 keV/3.95 MeV X-band electron linac-based X-ray sources for on-site bridge inspection and visualized the inner structure of a lower floor slab. The information regarding wire conditions by X-ray results was used for the structural analysis of a bridge to evaluate its residual strength and sustainability. For more precise inspection of wire conditions, we applied three-dimensional image reconstruction methods for bridge mock-up samples. Partial-angle computed tomography (CT) and tomosynthesis provided cross-sectional images of the samples at 1 mm resolutions. Image processing techniques such as the curvelet transform were applied to evaluate diameter of PC wires by suppressing noise. Technical guidelines of bridge maintenance using the 950 keV/3.95 MeV X-ray sources are proposed. We plan to offer our technique and guidelines for safer and more reliable maintenance of bridges around the world

    Vibration monitoring on a PC girder bridge during a bridge collapse test

    Get PDF
    Using the information gathered from structural health monitoring (SHM) has been proved successful when identifying damage on specific type of bridges. However to know the extent of the localized damage into the structural performance or even the degree of its vulnerability by means of the SHM is still under discussion. This study aims to examine how changes in load resistance capacity of an actual PC girder bridge influence on their dynamic properties. In this study a real PC girder bridge under static loadings, a bridge collapse-test, is discussed. In the static loading test, the PC Bridge was put under several loading and unloading levels until failure. Besides, forced vibration tests from both impact hammer test and moving-vehicle test were carried out along the static loading test, in order to assess the changes in the dynamic properties of the PC Bridge with different health conditions. The study investigates the influence of different phenomena, such as creep and cracks propagation, on the variation of modal parameters. Observations showed that changes in the frequency of the second bending mode was more analogous with the changes of load resistance capacity than the first bending mode

    Resectable hepatoblastoma with tumor thrombus extending into the right atrium after chemotherapy: A case report

    Get PDF
    AbstractHepatoblastoma with intraatrial tumor thrombus is relatively rare. We report a case of hepatoblastoma with tumor thrombus extending into the right atrium, which responded well to chemotherapy and was resected using extracorporeal circulation. A 4-year-old girl was referred to our hospital because of abdominal distention and tenderness. A computed tomography (CT) scan showed a large tumor occupying the left 3 segments of the liver with tumor thrombus extending into the right atrium. There was also a small intrahepatic metastasis in the right lobe of the liver. She was diagnosed with hepatoblastoma on the basis of the results of open biopsy. Neoadjuvant chemotherapy with an intense CDDP-based regimen was performed. The tumor responded well to chemotherapy, and intrahepatic metastasis became undetectable on CT scan, although the tumor thrombus remained in the right atrium. After 7 courses of chemotherapy, we performed resection using extracorporeal circulation. The postoperative course was uneventful, and adjuvant chemotherapy was started 10 days after the operation. Her serum alpha-fetoprotein (AFP) level decreased to the normal range, and she was free of disease for 1 year after the operation. Tumor resection using extracorporeal circulation can be performed safely and is justified in patients with intraatrial tumor thrombus

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    ヒカリ ファイバ センサ オ モチイタ モニタリング システム ノ カイハツ

    Get PDF
    京都大学0048新制・課程博士博士(工学)甲第10187号工博第2250号新制||工||1269(附属図書館)UT51-2003-H608京都大学大学院工学研究科土木システム工学専攻(主査)教授 小野 紘一, 教授 大西 有三, 教授 宮川 豊章学位規則第4条第1項該当Doctor of EngineeringKyoto UniversityDFA

    A Bayesian approach for vibration-based long-term bridge monitoring to consider environmental and operational changes

    Get PDF
    This study aims to propose a Bayesian approach to consider changes in temperature and vehicle weight as environmental and operational factors for vibration-based long-term bridge health monitoring. The Bayesian approach consists of three steps: step 1 is to identify damage-sensitive features from coefficients of the auto-regressive model utilizing bridge accelerations; step 2 is to perform a regression analysis of the damage-sensitive features to consider environmental and operational changes by means of the Bayesian regression; and step 3 is to make a decision on the bridge health condition based on residuals, differences between the observed and predicted damage-sensitive features, utilizing 95% confidence interval and the Bayesian hypothesis testing. Feasibility of the proposed approach is examined utilizing monitoring data on an in-service bridge recorded over a one-year period. Observations through the study demonstrated that the Bayesian regression considering environmental and operational changes led to more accurate results than that without considering environmental and operational changes. The Bayesian hypothesis testing utilizing data from the healthy bridge, the damage probability of the bridge was judged as no damage
    corecore