2 research outputs found

    In Vitro Activity of Caspofungin Combined with Sulfamethoxazole against Clinical Isolates of Aspergillus spp.

    No full text
    Caspofungin (CAS) inhibits fungal cell wall synthesis. Sulfamethoxazole (SMX) inhibits folate biosynthesis and is active in vitro against Aspergillus spp. We studied the activities of the combination of CAS and SMX against 31 Aspergillus isolates and compared them with that of SMX combined with amphotericin B (AMB) or itraconazole (ITC). MICs and minimal effective concentrations (MECs) were determined by the NCCLS broth microdilution method. With MIC endpoints, the combination of SMX and CAS showed synergy or synergy to additivity against 29 of 31 isolates. With MEC endpoints, synergy to additivity was found against 12 of 31 isolates and indifference was displayed against the rest of them. SMX in combination with AMB or ITC was not truly synergistic, while synergy to additivity was found for SMX-AMB and SMX-ITC against 17 of 31 and 3 of 12 isolates, respectively. No antagonism was found with any of the drug combinations. Further analysis of the synergy of CAS and SMX was performed by detailed measurement of hyphal length by microscopy and time-dependent 2,3-bis(2-methoxy-4-nitro-5-[(sulfenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT)-based hyphal damage experiments. With MEC endpoints, the combination of CAS and SMX was characterized by a greater than 50% decrease in hyphal length compared to the hyphal lengths achieved with double the concentration of each drug alone. The XTT-based hyphal damage studies showed a statistically significant (P < 0.05) reduction in viability with CAS and SMX in combination compared to the viabilities achieved with double the concentration of each drug alone. These findings support the synergy results found by using MIC endpoints and suggest that visual MEC measurements may not be sufficient to identify the synergistic interactions seen by more sensitive, quantitative methods. Animal models are required to validate the significance of the synergy of CAS and SMX against Aspergillus spp. observed in vitro

    The image-forming mirror in the eye of the scallop

    No full text
    Scallops possess a visual system comprising up to 200 eyes, each containing a concave mirror rather than a lens to focus light. The hierarchical organization of the multilayered mirror is controlled for image formation, from the component guanine crystals at the nanoscale to the complex three-dimensional morphology at the millimeter level. The layered structure of the mirror is tuned to reflect the wavelengths of light penetrating the scallop’s habitat and is tiled with a mosaic of square guanine crystals, which reduces optical aberrations. The mirror forms images on a double-layered retina used for separately imaging the peripheral and central fields of view. The tiled, off-axis mirror of the scallop eye bears a striking resemblance to the segmented mirrors of reflecting telescopes
    corecore