111 research outputs found

    Current crisis or artifact of surveillance: insights into rebound chlamydia rates from dynamic modelling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After initially falling in the face of intensified control efforts, reported rates of sexually transmitted chlamydia in many developed countries are rising. Recent hypotheses for this phenomenon have broadly focused on improved case finding or an increase in the prevalence. Because of many complex interactions behind the spread of infectious diseases, dynamic models of infection transmission are an effective means to guide learning, and assess quantitative conjectures of epidemiological processes. The objective of this paper is to bring a unique and robust perspective to observed chlamydial patterns through analyzing surveillance data with mathematical models of infection transmission.</p> <p>Methods</p> <p>This study integrated 25-year testing volume data from the Canadian province of Saskatchewan with one susceptible-infected-treated-susceptible and three susceptible-infected-treated-removed compartmental models. Calibration of model parameters to fit observed 25-year case notification data, after being combined with testing records, placed constraints on model behaviour and allowed for an approximation of chlamydia prevalence to be estimated. Model predictions were compared to observed case notification trends, and extensive sensitivity analyses were performed to confirm the robustness of model results.</p> <p>Results</p> <p>Model predictions accurately mirrored historic chlamydial trends including an observed rebound in the mid 1990s. For all models examined, the results repeatedly highlighted that increased testing volumes, rather than changes in the sensitivity and specificity of testing technologies, sexual behaviour, or truncated immunological responses brought about by treatment can, explain the increase in observed chlamydia case notifications.</p> <p>Conclusions</p> <p>Our results highlight the significant impact testing volume can have on observed incidence rates, and that simple explanations for these observed increases appear to have been dismissed in favor of changes to the underlying prevalence. These simple methods not only demonstrate geographic portability, but the results reassure the public health effort towards monitoring and controlling chlamydia.</p

    Agent-Based Modeling and its Tradeoffs: An Introduction & Examples

    Full text link
    Agent-based modeling is a computational dynamic modeling technique that may be less familiar to some readers. Agent-based modeling seeks to understand the behaviour of complex systems by situating agents in an environment and studying the emergent outcomes of agent-agent and agent-environment interactions. In comparison with compartmental models, agent-based models offer simpler, more scalable and flexible representation of heterogeneity, the ability to capture dynamic and static network and spatial context, and the ability to consider history of individuals within the model. In contrast, compartmental models offer faster development time with less programming required, lower computational requirements that do not scale with population, and the option for concise mathematical formulation with ordinary, delay or stochastic differential equations supporting derivation of properties of the system behaviour. In this chapter, basic characteristics of agent-based models are introduced, advantages and disadvantages of agent-based models, as compared with compartmental models, are discussed, and two example agent-based infectious disease models are reviewed

    A unified framework of immunological and epidemiological dynamics for the spread of viral infections in a simple network-based population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The desire to better understand the immuno-biology of infectious diseases as a broader ecological system has motivated the explicit representation of epidemiological processes as a function of immune system dynamics. While several recent and innovative contributions have explored unified models across cellular and organismal domains, and appear well-suited to describing particular aspects of intracellular pathogen infections, these existing immuno-epidemiological models lack representation of certain cellular components and immunological processes needed to adequately characterize the dynamics of some important epidemiological contexts. Here, we complement existing models by presenting an alternate framework of anti-viral immune responses within individual hosts and infection spread across a simple network-based population.</p> <p>Results</p> <p>Our compartmental formulation parsimoniously demonstrates a correlation between immune responsiveness, network connectivity, and the natural history of infection in a population. It suggests that an increased disparity between people's ability to respond to an infection, while maintaining an average immune responsiveness rate, may worsen the overall impact of an outbreak within a population. Additionally, varying an individual's network connectivity affects the rate with which the population-wide viral load accumulates, but has little impact on the asymptotic limit in which it approaches. Whilst the clearance of a pathogen in a population will lower viral loads in the short-term, the longer the time until re-infection, the more severe an outbreak is likely to be. Given the eventual likelihood of reinfection, the resulting long-run viral burden after elimination of an infection is negligible compared to the situation in which infection is persistent.</p> <p>Conclusion</p> <p>Future infectious disease research would benefit by striving to not only continue to understand the properties of an invading microbe, or the body's response to infections, but how these properties, jointly, affect the propagation of an infection throughout a population. These initial results offer a refinement to current immuno-epidemiological modelling methodology, and reinforce how coupling principles of immunology with epidemiology can provide insight into a multi-scaled description of an ecological system. Overall, we anticipate these results to as a further step towards articulating an integrated, more refined epidemiological theory of the reciprocal influences between host-pathogen interactions, epidemiological mixing, and disease spread.</p

    Customizable program analysis via generic abstract interpretation

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 419-420).by Nathaniel D. Osgood.Ph.D

    Methods of competing risks analysis of end-stage renal disease and mortality among people with diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When a patient experiences an event other than the one of interest in the study, usually the probability of experiencing the event of interest is altered. By contrast, disease-free survival time analysis by standard methods, such as the Kaplan-Meier method and the standard Cox model, does not distinguish different causes in the presence of competing risks. Alternative approaches use the cumulative incidence estimator by the Cox models on cause-specific and on subdistribution hazards models. We applied cause-specific and subdistribution hazards models to a diabetes dataset with two competing risks (end-stage renal disease (ESRD) or death without ESRD) to measure the relative effects of covariates and cumulative incidence functions.</p> <p>Results</p> <p>In this study, the cumulative incidence curve of the risk of ESRD by the cause-specific hazards model was revealed to be higher than the curves generated by the subdistribution hazards model. However, the cumulative incidence curves of risk of death without ESRD based on those three models were very similar.</p> <p>Conclusions</p> <p>In analysis of competing risk data, it is important to present both the results of the event of interest and the results of competing risks. We recommend using either the cause-specific hazards model or the subdistribution hazards model for a dominant risk. However, for a minor risk, we do not recommend the subdistribution hazards model and a cause-specific hazards model is more appropriate. Focusing the interpretation on one or a few causes and ignoring the other causes is always associated with a risk of overlooking important features which may influence our interpretation.</p

    Compositional Modeling with Stock and Flow Diagrams

    Full text link
    Stock and flow diagrams are widely used in epidemiology to model the dynamics of populations. Although tools already exist for building these diagrams and simulating the systems they describe, we have created a new package called StockFlow, part of the AlgebraicJulia ecosystem, which uses ideas from category theory to overcome notable limitations of existing software. Compositionality is provided by the theory of decorated cospans: stock and flow diagrams can be composed to form larger ones in an intuitive way formalized by the operad of undirected wiring diagrams. Our approach also cleanly separates the syntax of stock and flow diagrams from the semantics they can be assigned. We consider semantics in ordinary differential equations, although others are possible. As an example, we explain code in StockFlow that implements a simplified version of a COVID-19 model used in Canada.Comment: In Proceedings ACT 2022, arXiv:2307.1551
    • …
    corecore