116 research outputs found

    Numerical analysis of the light modulation by the frustule of Gomphonema parvulum : the role of integrated optical components

    Get PDF
    Siliceous diatom frustules present a huge variety of shapes and nanometric pore patterns. A better understanding of the light modulation by these frustules is required to determine whether or not they might have photobiological roles besides their possible utilization as building blocks in photonic applications. In this study, we propose a novel approach for analyzing the near-field light modulation by small pennate diatom frustules, utilizing the frustule of Gomphonema parvulum as a model. Numerical analysis was carried out for the wave propagation across selected 2D cross-sections in a statistically representative 3D model for the valve based on the finite element frequency domain method. The influences of light wavelength (vacuum wavelengths from 300 to 800 nm) and refractive index changes, as well as structural parameters, on the light modulation were investigated and compared to theoretical predictions when possible. The results showed complex interference patterns resulting from the overlay of different optical phenomena, which can be explained by the presence of a few integrated optical components in the valve. Moreover, studies on the complete frustule in an aqueous medium allow the discussion of its possible photobiological relevance. Furthermore, our results may enable the simple screening of unstudied pennate frustules for photonic applications

    Synthesis of polymer Janus particles with tunable wettability profiles as potent solid surfactants to promote gas delivery in aqueous reaction media

    Get PDF
    Janus particles exhibit a strong tendency to directionally assemble and segregate to interfaces and thus offer advantages as colloidal analogues of molecular surfactants to improve the stability of multiphasic mixtures. Investigation and application of the unique adsorption properties require synthetic procedures that enable careful design and reliable control over the particles’ asymmetric chemistry and wettability profiles with high morphological uniformity across a sample. Herein, we report on a novel one-step synthetic approach for the generation of amphiphilic polymer Janus particles with highly uniform and tunable wettability contrasts, which is based on using reconfigurable bi-phasic Janus emulsions as versatile particle scaffolds. Two phase-separated acrylate oils were used as the constituent droplet phases and transformed into their solidified Janus particle replicas via UV-induced radical polymerization. Using Janus emulsions as particle precursors offers the advantage that their internal droplet geometry can be fine-tuned by changing the force balance of surface tensions acting at the individual interfaces via surfactants or the volume ratio of the constituent phases. In addition, preassembled functional surfactants at the droplet interfaces can be locked in position upon polymerization, which enables both access toward postfunctionalization reaction schemes and the generation of highly uniform Janus particles with adjustable wettability profiles. Depending on the particle morphology and wettability, their interfacial position can be adjusted, which allows us to stabilize either air bubbles-in-water or water droplets-in-air (liquid marbles). Motivated by the interfacial activity of the particles and particularly the longevity of the resulting particle-stabilized air-in-water bubbles, we explored their ability to promote the delivery of oxygen inside a liquid-phase reaction medium, namely, for the heterogeneous Au-NP-mediated catalytic oxidation of d-glucose. We observed a 2.2-fold increase in the reaction rate attributed to the increase of the local concentration of oxygen around catalysts, thus showcasing a new strategy to overcome the limited solubility of gases in aqueous reaction media

    Evolution of porosity in carbide-derived carbon aerogels

    Get PDF
    Carbide-derived carbon (CDC) aerogel monoliths with very high porosity are synthesized starting from polymeric precursors. Cross-linking by platinum-catalyzed hydrosilylation of polycarbosilanes followed by supercritical drying yields preceramic aerogels. After ceramic conversion and silicon extraction in hot chlorine gas, hierarchically porous carbon materials with specific surface areas as high as 2122 m² g⁻¹ and outstanding total pore volumes close to 9 cm³ g⁻¹ are obtained. Their pore structure is controllable by the applied synthesis temperature as shown by combined nitrogen (-196 °C) and carbon dioxide (0 °C) measurements coupled with electron microscopic methods. The combination of large micropore volumes and the aerogel-type pore system leads to advanced adsorption properties due to a combination of large storage capacities and effective materials transport in comparison with purely microporous reference materials as shown by thermal response measurements

    Mechanistic insights into the reversible lithium storage in an open porous carbon via metal cluster formation in all solid-state batteries

    Get PDF
    Porous carbons are promising anode materials for next generation lithium batteries due to their large lithium storage capacities. However, their high voltage slope during lithiation and delithiation as well as capacity fading due to intense formation of solid electrolyte interphase (SEI) limit their gravimetric and volumetric energy densities. Herein we compare a microporous carbide-derived carbon material (MPC) as promising future anode for all solid-state batteries with a commercial high-performance hard carbon anode. The MPC obtains high and reversible lithiation capacities of 1000 mAh g−1carbon in half-cells exhibiting an extended plateau region near 0 V vs. Li/Li+ preferable for full-cell application. The well-defined micro porosity of the MPC with a specific surface area of >1500 m2 g−1 combines well with the argyrodite-type electrolyte (Li6PS5Cl) suppressing extensive SEI formation to deliver high coulombic efficiencies. Preliminary full-cell measurements vs. nickel-rich NMC-cathodes (LiNi0.9Co0.05Mn0.05O2) provide a considerably improved average potential of 3.76 V leading to a projected energy density as high as 449 Wh kg−1 and reversible cycling for more than 60 cycles. 7Li Nuclear Magnetic Resonance spectroscopy was combined with ex-situ Small Angle X-ray Scattering to elucidate the storage mechanism of lithium inside the carbon matrix. The formation of extended quasi-metallic lithium clusters after electrochemical lithiation was revealed

    An increase in food production in Europe could dramatically affect farmland biodiversity

    Get PDF
    Conversion of semi-natural habitats, such as field margins, fallows, hedgerows, grassland, woodlots and forests, to agricultural land could increase agricultural production and help meet rising global food demand. Yet, the extent to which such habitat loss would impact biodiversity and wild species is unknown. Here we survey species richness for four taxa (vascular plants, earthworms, spiders, wild bees) and agricultural yield across a range of arable, grassland, mixed, horticulture, permanent crop, for organic and non-organic agricultural land on 169 farms across 10 European regions. We find that semi-natural habitats currently constitute 23% of land area with 49% of species unique to these habitats. We estimate that conversion of semi-natural land that achieves a 10% increase in agricultural production will have the greatest impact on biodiversity in arable systems and the least impact in grassland systems, with organic practices having better species retention than non-organic practices. Our findings will help inform sustainable agricultural development

    Gains to species diversity in organically farmed fields are not propagated at the farm level

    Get PDF
    Organic farming is promoted to reduce environmental impacts of agriculture, but surprisingly little is known about its effects at the farm level, the primary unit of decision making. Here we report the effects of organic farming on species diversity at the field, farm and regional levels by sampling plants, earthworms, spiders and bees in 1470 fields of 205 randomly selected organic and nonorganic farms in twelve European and African regions. Species richness is, on average, 10.5% higher in organic than nonorganic production fields, with highest gains in intensive arable fields (around +45%). Gains to species richness are partly caused by higher organism abundance and are common in plants and bees but intermittent in earthworms and spiders. Average gains are marginal +4.6% at the farm and +3.1% at the regional level, even in intensive arable regions. Additional, targeted measures are therefore needed to fulfil the commitment of organic farming to benefit farmland biodiversity

    An increase in food production in Europe could dramatically affect farmland biodiversity

    Get PDF
    Conversion of semi-natural habitats, such as field margins, fallows, hedgerows, grassland, woodlots and forests, to agricultural land could increase agricultural production and help meet rising global food demand. Yet, the extent to which such habitat loss would impact biodiversity and wild species is unknown. Here we survey species richness for four taxa (vascular plants, earthworms, spiders, wild bees) and agricultural yield across a range of arable, grassland, mixed, horticulture, permanent crop, for organic and non-organic agricultural land on 169 farms across 10 European regions. We find that semi-natural habitats currently constitute 23% of land area with 49% of species unique to these habitats. We estimate that conversion of semi-natural land that achieves a 10% increase in agricultural production will have the greatest impact on biodiversity in arable systems and the least impact in grassland systems, with organic practices having better species retention than non-organic practices. Our findings will help inform sustainable agricultural development

    Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy

    Get PDF
    Ionic transport inside porous carbon electrodes underpins the storage of energy in supercapacitors and the rate at which they can charge and discharge, yet few studies have elucidated the materials properties that influence ion dynamics. Here we use in situ pulsed field gradient NMR spectroscopy to measure ionic diffusion in supercapacitors directly. We find that confinement in the nanoporous electrode structures decreases the effective self-diffusion coefficients of ions by over two orders of magnitude compared with neat electrolyte, and in-pore diffusion is modulated by changes in ion populations at the electrode/electrolyte interface during charging. Electrolyte concentration and carbon pore size distributions also affect in-pore diffusion and the movement of ions in and out of the nanopores. In light of our findings we propose that controlling the charging mechanism may allow the tuning of the energy and power performances of supercapacitors for a range of different applications
    corecore