102 research outputs found

    Asymptotic Giant Brach Stars as Astroparticle Laboratories

    Get PDF
    We show that the inclusion of axion emission during stellar evolution introduces important changes into the evolutionary behaviour of AGB stars. The mass of the resulting C/O white dwarf is much lower than the equivalent obtained from standard evolution. This implies a deficit in luminous AGB stars and in massive WDs. Moreover the total mass processed in the nuclear burning shells that is dredged-up to the surface (3rdDup3^{rd} D_{up}) increases when axion emission is included, modifying the chemical composition of the photosphere. We conclude that the AGB is a promising phase to put constraints on particle physicsComment: 8 pages, 3 tables, 8 figures, accepted for publication in MNRA

    Heavy elements in Globular Clusters: the role of AGB stars

    Full text link
    Recent observations of heavy elements in Globular Clusters reveal intriguing deviations from the standard paradigm of the early galactic nucleosynthesis. If the r-process contamination is a common feature of halo stars, s-process enhancements are found in a few Globular Clusters only. We show that the combined pollution of AGB stars with mass ranging between 3 to 6 M⊙_\odot may account for most of the features of the s-process overabundance in M4 and M22. In these stars, the s process is a mixture of two different neutron-capture nucleosynthesis episodes. The first is due to the 13C(a,n)16O reaction and takes place during the interpulse periods. The second is due to the 22Ne(a,n)25Mg reaction and takes place in the convective zones generated by thermal pulses. The production of the heaviest s elements (from Ba to Pb) requires the first neutron burst, while the second produces large overabundances of light s (Sr, Y, Zr). The first mainly operates in the less-massive AGB stars, while the second dominates in the more-massive. From the heavy-s/light-s ratio, we derive that the pollution phase should last for 150±50150\pm 50 Myr, a period short enough compared to the formation timescale of the Globular Cluster system, but long enough to explain why the s-process pollution is observed in a few cases only. With few exceptions, our theoretical prediction provides a reasonable reproduction of the observed s-process abundances, from Sr to Hf. However, Ce is probably underproduced by our models, while Rb and Pb are overproduced. Possible solutions are discussed.Comment: Accepted by the Ap

    Type Ia supernovae: differences due to progenitors within delayed detonation explosions

    Get PDF
    At this moment, the use of SNIa for cosmology lies on the assumption that the SNe at high redshifts are equal to the local ones. However, some observations indicate a correlation between the light curve (LC) properties and the morphological type of the host galaxy. This could indicate a dependence with the age (mass/composition) of the underlying population. In this work we have chosen the delayed detonation explosion model in CO Chandrasekhar mass WDs to explore the dependence of the SNIa LC and nucleosynthesis with the initial mass and composition of the WD progenitor. The progenitor influences the final SNIa via the mass of the CO core formed and the C/O ratio within it (1D explosion models). We have followed the evolution of stars with masses between 1.5 and 8 Mo and metallicity, Z=0, 1.E-05, 0.001 and 0.02, from the pre-main sequence to the TP-AGB phase. The differences obtained in the final C/O ratio within the explosive WD are smaller than 22%. This results in a difference at maximum of 0.03 mag and of 0.1 mag when the brightness-decline relation is applied.Comment: 4 pages, 1 figure, needs espcrc1.sty; conference "Nuclei in the Cosmos 2000", held in Arhus, Denmark, June 27-July 1, 2000; submitted to Nucl. Phys.

    On the need of the Light Elements Primary Process (LEPP)

    Get PDF
    Extant chemical evolution models underestimate the Galactic production of Sr, Y and Zr as well as the Solar System abundances of s-only isotopes with 90<A<130. To solve this problem, an additional (unknown) process has been invoked, the so-called LEPP (Light Element Primary Process). In this paper we investigate possible alternative solutions. Basing on Full Network Stellar evolutionary calculations, we investigate the effects on the Solar System s-only distribution induced by the inclusion of some commonly ignored physical processes (e.g. rotation) or by the variation of the treatment of convective overshoot, mass-loss and the efficiency of nuclear processes. Our main findings are: 1) at the epoch of the formation of the Solar System, our reference model produces super-solar abundances for the whole s-only distribution, even in the range 90<A<130; 2) within errors, the s-only distribution relative to 150Sm is flat; 3) the s-process contribution of the less massive AGB stars (M<1.5 M_SUN) as well as of the more massive ones (M>4.0 M_SUN) are negligible; 4) the inclusion of rotation implies a downward shift of the whole distribution with an higher efficiency for the heavy s-only isotopes, leading to a flatter s-only distribution; 5) different prescriptions on convection or mass-loss produce nearly rigid shifts of the whole distribution. In summary, a variation of the standard paradigm of AGB nucleosynthesis would allow to reconcile models predictions with Solar System s-only abundances. Nonetheless, the LEPP cannot be definitely ruled out, because of the uncertainties still affecting stellar and Galactic chemical evolution models.Comment: Accepted for publication on Ap

    Impact of Axions on the Minimum Mass of Core Collapse Supernova Progenitors

    Full text link
    In this study we include axions in stellar evolution models adopting the current stringest constraints for their coupling to photons and electrons. We obtain that the minimum stellar mass of Core Collapse Supernova (CCSN) progenitors is shifted up by nearly 2 Mo. This result seems to be in tension with the observationaly derived minimum mass of CCSN progenitors.Comment: Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs, Thessaloniki, May 15 to 19, 201

    Two barium stars in the Galactic bulge

    Full text link
    Barium stars conserve important information on the s-process and the third dredge-up in intermediate mass stars. Their discovery in various environments is therefore of great help to test nucleosynthesis and mixing models. Our aim is to analyse two stars with a very strong barium line detected in a large survey of red giants in the Galactic bulge. Abundance analysis was done comparing synthetic model spectra based on the COMARCS code with our medium resolution spectra. Abundances of Ba, La, Y, and Fe were determined. Beside the two main targets, the analysis was also applied to two comparison stars. We confirm that both stars are barium stars. They are the first ones of this kind identified in the Galactic bulge. Their barium excesses are among the largest values found up to now. The elemental abundances are compared with current nucleosynthesis and mixing models. Furthermore, we estimate a frequency of barium stars in the Galactic bulge of about 1%, which is identical to the value for disc stars.Comment: 4 pages, accepted for publication in A&

    Axion-electron coupling from the RGB tip of Globular Clusters

    Full text link
    We present a preliminary study of the Globular Cluster RGB devoted to improve the available constraint for the axion-electron coupling. By means of multi-band IR photometry of the cluster M3 we obtain g_{ae}/10^{-13} < 2.57 (95\% C.L.).Comment: paper submitted to Proceedings of the 13th Patras Workshop on Axions, WIMPs and WISPs (Patras2017)

    The puzzle of the CNO isotope ratios in AGB carbon stars

    Full text link
    Previous determinations of the oxygen isotopic ratios in AGB carbon stars were at odds with the existing theoretical predictions. We aim to redetermine the oxygen ratios in these stars using new spectral analysis tools and further develop discussions on the carbon and nitrogen isotopic ratios in order to elucidate this problem. Oxygen isotopic ratios were derived from spectra in the K-band in a sample of galactic AGB carbon stars of different spectral types and near solar metallicity. Synthetic spectra calculated in LTE with spherical carbon-rich atmosphere models and updated molecular line lists were used. The CNO isotope ratios derived in a homogeneous way, were compared with theoretical predictions for low-mass (1.5-3 M_o) AGB stars computed with the FUNS code assuming extra mixing both during the RGB and AGB phases. For most of the stars the 16O/17O/18O ratios derived are in good agreement with theoretical predictions confirming that, for AGB stars, are established using the values reached after the FDU according to the initial stellar mass. This fact, as far as the oxygen isotopic ratios are concerned, leaves little space for the operation of any extra mixing mechanism during the AGB phase. Nevertheless, for a few stars with large 16O/17O/18O, the operation of such a mechanism might be required, although their observed 12C/13C and 14N/15N ratios would be difficult to reconcile within this scenario. Furthermore, J-type stars tend to have lower 16O/17O ratios than the normal carbon stars, as already indicated in previous studies. Excluding these peculiar stars, AGB carbon stars occupy the same region as pre-solar type I oxide grains in a 17O/16O vs. 18O/16O diagram, showing little spread. This reinforces the idea that these grains were probably formed in low-mass stars during the previous O-rich phases.Comment: Accepted fo publication in A&

    Oxygen isotopic ratios in intermediate-mass red giants

    Get PDF
    Context. The abundances of the three main isotopes of oxygen are altered in the course of the CNO-cycle. When the first dredge-up mixes the burning products to the surface, the nucleosynthesis processes can be probed by measuring oxygen isotopic ratios. Aims. By measuring 16O/17O and 16O/18O in red giants of known mass we compare the isotope ratios with predictions from stellar and galactic evolution modelling. Methods. Oxygen isotopic ratios were derived from the K-band spectra of six red giants. The sample red giants are open cluster members with known masses of between 1.8 and 4.5 Msun . The abundance determination employs synthetic spectra calculated with the COMARCS code. The effect of uncertainties in the nuclear reaction rates, the mixing length, and of a change in the initial abundance of the oxygen isotopes was determined by a set of nucleosynthesis and mixing models using the FUNS code. Results. The observed 16O/17O ratios are in good agreement with the model results, even if the measured values do not present clear evidence of a variation with the stellar mass. The observed 16O/18O ratios are clearly lower than the predictions from our reference model. Variations in nuclear reaction rates and mixing length parameter both have only a very weak effect on the predicted values. The 12C/13C ratios of the K giants studied implies the absence of extra-mixing in these objects. Conclusions. A comparison with galactic chemical evolution models indicates that the 16O/18O abundance ratio underwent a faster decrease than predicted. To explain the observed ratios, the most likely scenario is a higher initial 18O abundance combined with a lower initial 16 O abundance. Comparing the measured 18 O/17 O ratio with the corresponding value for the ISM points towards an initial enhancement of 17O as well. Limitations imposed by the observations prevent this from being a conclusive result.Comment: 9 pages, accepted for publication in Astronomy & Astrophysic
    • …
    corecore