58 research outputs found

    Structural Derivative Model for Tissue Radiation Response

    Get PDF
    By means of a recently-proposed metric or structural derivative, called scale-q-derivative approach, we formulate differential equation that models the cell death by a radiation exposure in tumor treatments. The considered independent variable here is the absorbed radiation dose D instead of usual time. The survival factor, Fs, for radiation damaged cell obtained here is in agreement with the literature on the maximum entropy principle, as it was recently shown and also exhibits an excellent agreement with the experimental data. Moreover, the well-known linear and quadratic models are obtained. With this approach, we give a step forward and suggest other expressions for survival factors that are dependent on the complex tumor structure.Comment: 6 pages, 2 collumn

    Non-extensive radiobiology

    Full text link
    The expression of survival factors for radiation damaged cells is based on probabilistic assumptions and experimentally fitted for each tumor, radiation and conditions. Here we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. A generalization of the exponential, the logarithm and the product to a non-extensive framework, provides a simple formula for the survival fraction corresponding to the application of several radiation doses on a living tissue. The obtained expression shows a remarkable agreement with the experimental data found in the literature, also providing a new interpretation of some of the parameters introduced anew. It is also shown how the presented formalism may has direct application in radiotherapy treatment optimization through the definition of the potential effect difference, simply calculated between the tumour and the surrounding tissue.Comment: 8 pages, 1 figure. Sent to MaxEnt 2010. To be submitted for publicatio
    • …
    corecore