21 research outputs found

    Lymphangiogenesis Linked to VEGF-C from Tumor-Associated Macrophages: Accomplices to Metastasis by Cutaneous Squamous Cell Carcinoma?

    Get PDF
    During wound healing, dermal macrophages secrete lymphangiogenic vascular endothelial growth factor (VEGF)-C, and lymphatic vessels transport cytokines and cells to draining lymph nodes. In this issue, Moussai et al. show that macrophages in peritumoral nonlesional skin near squamous cell carcinoma secrete prolymphangiogenic VEGF-C. Their study suggests how tumor-associated macrophages and neolymphatic vessels may coordinate metastasis starting early in cutaneous squamous cell carcinoma

    The density of small tight junction pores varies among cell types and is increased by expression of claudin-2

    Get PDF
    Epithelial tight junctions contain size- and charge-selective pores that control the paracellular movement of charged and noncharged solutes. Claudins influence the charge selectivity and electrical resistance of junctions, but there is no direct evidence describing pore composition or whether pore size or density differs among cell types. To characterize paracellular pores independent of influences from charge selectivity, we profiled the ;apparent permeabilities' (P(app)) of a continuous series of noncharged polyethylene glycols (PEGs) across monolayers of five different epithelial cell lines and porcine ileum. We also characterized P(app) of high and low electrical resistance MDCK cell monolayers expressing heterologous claudins. P(app) profiling confirms that the paracellular barrier to noncharged solutes can be modeled as two distinct pathways: high-capacity small pores and a size-independent pathway allowing flux of larger solutes. All cell lines and ileum share a pore aperture of radius 4 A. Using P(app) of a PEG of radius 3.5 A to report the relative pore number provides the novel insight that pore density along the junction varies among cell types and is not necessarily related to electrical resistance. Expression of claudin-2 results in a selective increase in pore number but not size and has no effect on the permeability of PEGs that are larger than the pores; however, neither knockdown of claudin-2 nor overexpression of several other claudins altered either the number of small pores or their size. We speculate that permeability of all small solutes is proportional to pore number but that small electrolytes are subject to further selectivity by the profile of claudins expressed, explaining the dissociation between the P(app) for noncharged solutes and electrical resistance. Although claudins are likely to be components of the small pores, other factors might regulate pore number

    TLR-3 Stimulation Skews M2 Macrophages to M1 Through IFN-αβ Signaling and Restricts Tumor Progression

    Get PDF
    During tumor progression, macrophages shift their protective M1-phenotype to pro-tumorigenic M2-subtype. Therefore, conversion of M2 to M1 phenotype may be a potential therapeutic intervention. TLRs are important pathogen recognition receptors expressed by cells of the immune system. Recently, a crucial role of TLR-3 has been suggested in cancer. Consequently, in the current study, we defined the role of TLR-3 in the reversion of M2-macrophages to M1. We analyzed the role of TLR-3 stimulation for skewing M2-macrophages to M1 at mRNA and protein level through qRT-PCR, flow cytometry, western blotting, and ELISA. The effectiveness of TLR-3L stimulation to revert M2-macrophages to M1 was evaluated in the murine tumor model. To determine the role of IFN-αβ signaling in vitro and in vivo, we used Ifnar1−/− macrophages and anti-IFN-αβ antibodies, respectively. We observed upregulation of M1-specific markers MHC-II and costimulatory molecules like CD86, CD80, and CD40 on M2-macrophages upon TLR-3 stimulation. In contrast, reduced expression of M2-indicators CD206, Tim-3, and pro-inflammatory cytokines was noticed. The administration of TLR-3L in the murine tumor reverted the M2-macrophages to M1-phenotype and regressed the tumor growth. The mechanism deciphered for macrophage reversion and controlling the tumor growth is dependent on IFN-αβ signaling pathway. The results indicate that the signaling through TLR-3 is important in protection against tumors by skewing M2-macrophages to protective M1-subtype

    Photoacoustic Imaging of Tattoo Inks: Phantom and Clinical Evaluation

    No full text
    Photoacoustic imaging (PAI) is a novel hybrid imaging modality that provides excellent optical contrast with the spatial resolution of ultrasound in vivo. The method is widely being investigated in the clinical setting for diagnostic applications in dermatology. In this report, we illustrate the utility of PAI as a non-invasive tool for imaging tattoos. Ten different samples of commercially available tattoo inks were examined for their optoacoustic properties in vitro. In vivo PAI of an intradermal tattoo on the wrist was performed in a healthy human volunteer. Black/gray, green, violet, and blue colored pigments provided higher levels of PA signal compared to white, orange, red, and yellow pigments in vitro. PAI provided excellent contrast and enabled accurate delineation of the extent of the tattoo in the dermis. Our results reveal the photoacoustic properties of tattoo inks and demonstrate the potential clinical utility of PAI for intradermal imaging of tattoos. PAI may be useful as a clinical adjunct for objective preoperative evaluation of tattoos and potentially to guide/monitor laser-based tattoo removal procedures
    corecore