31 research outputs found

    Reframing the link between metabolism and NLRP3 inflammasome: therapeutic opportunities

    Get PDF
    Inflammasomes are multiprotein signaling platforms in the cytosol that senses exogenous and endogenous danger signals and respond with the maturation and secretion of IL-1β and IL-18 and pyroptosis to induce inflammation and protect the host. The inflammasome best studied is the Nucleotide-binding oligomerization domain, leucine-rich repeat-containing family pyrin domain containing 3 (NLRP3) inflammasome. It is activated in a two-step process: the priming and the activation, leading to sensor NLRP3 oligomerization and recruitment of both adaptor ASC and executioner pro-caspase 1, which is activated by cleavage. Moreover, NLRP3 inflammasome activation is regulated by posttranslational modifications, including ubiquitination/deubiquitination, phosphorylation/dephosphorylation, acetylation/deacetylation, SUMOylation and nitrosylation, and interaction with NLPR3 protein binding partners. Moreover, the connection between it and metabolism is receiving increasing attention in this field. In this review, we present the structure, functions, activation, and regulation of NLRP3, with special emphasis on regulation by mitochondrial dysfunction-mtROS production and metabolic signals, i.e., metabolites as well as enzymes. By understanding the regulation of NLRP3 inflammasome activation, specific inhibitors can be rationally designed for the treatment and prevention of various immune- or metabolic-based diseases. Lastly, we review current NLRP3 inflammasome inhibitors and their mechanism of action

    Recapping the Features of SARS-CoV-2 and Its Main Variants: Status and Future Paths

    Get PDF
    Over the two years that we have been experiencing the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, our challenges have been the race to develop vaccines and the difficulties in fighting against new variants due to the rapid ability of the virus to evolve. In this sense, different organizations have identified and classified the different variants that have been emerging, distinguishing between variants of concern (VOC), variants of interest (VOI), or variants under monitoring (VUM). The following review aims to describe the latest updates focusing on VOC and already de-escalated variants, as well as to describe the impact these have had on the global situation. Understanding the intrinsic properties of SARS-CoV-2 and its interaction with the immune system and vaccination is essential to make out the underlying mechanisms that have led to the appearance of these variants, helping to determine the next steps for better public management of this pandemic

    An Overview of the Role of MicroRNAs on Carcinogenesis: A Focus on Cell Cycle, Angiogenesis and Metastasis

    No full text
    In recent years, the importance of epigenetic markers in the carcinogenesis of different malignant neoplasms has been demonstrated, also demonstrating their utility for understanding metastatic spread and tumor progression in cancer patients. Among the different biomarkers, microRNAs represent a set of non-coding RNAs that regulate gene expression, having been involved in a wide variety of neoplasia acting in different oncogenic pathways. Both the overexpression and downregulation of microRNAs represent a complex interaction with various genes whose ultimate consequence is increased cell proliferation, tumor invasion and interaction with various driver markers. It should be noted that in current clinical practice, even though the combination of different microRNAs has been shown to be useful by different authors at diagnostic and prognostic levels, there are no diagnostic kits that can be used for the initial approach or to assess recurrences of oncological diseases. Previous works have cited microRNAs as having a critical role in several carcinogenic mechanisms, ranging from cell cycle alterations to angiogenesis and mechanisms of distant metastatic dissemination. Indeed, the overexpression or downregulation of specific microRNAs seem to be tightly involved in the modulation of various components related to these processes. For instance, cyclins and cyclin-dependent kinases, transcription factors, signaling molecules and angiogenic/antiangiogenic products, among others, have been recognized as specific targets of microRNAs in different types of cancer. Therefore, the purpose of this article is to describe the main implications of different microRNAs in cell cycle alterations, metastasis and angiogenesis, trying to summarize their involvement in carcinogenesis

    Exploring the Role of Nutraceuticals in Major Depressive Disorder (MDD): Rationale, State of the Art and Future Prospects

    No full text
    Major depressive disorder (MDD) is a complex and common disorder, with many factors involved in its onset and development. The clinical management of this condition is frequently based on the use of some pharmacological antidepressant agents, together with psychotherapy and other alternatives in most severe cases. However, an important percentage of depressed patients fail to respond to the use of conventional therapies. This has created the urgency of finding novel approaches to help in the clinical management of those individuals. Nutraceuticals are natural compounds contained in food with proven benefits either in health promotion or disease prevention and therapy. A growing interest and economical sources are being placed in the development and understanding of multiple nutraceutical products. Here, we summarize some of the most relevant nutraceutical agents evaluated in preclinical and clinical models of depression. In addition, we will also explore less frequent but interest nutraceutical products which are starting to be tested, also evaluating future roads to cover in order to maximize the benefits of nutraceuticals in MDD

    An Updated View of the Importance of Vesicular Trafficking and Transport and Their Role in Immune-Mediated Diseases: Potential Therapeutic Interventions

    No full text
    Cellular trafficking is the set of processes of distributing different macromolecules by the cell. This process is highly regulated in cells, involving a system of organelles (endomembranous system), among which are a great variety of vesicles that can be secreted from the cell, giving rise to different types of extracellular vesicles (EVs) that can be captured by other cells to modulate their function. The cells of the immune system are especially sensitive to this cellular traffic, producing and releasing different classes of EVs, especially in disease states. There is growing interest in this field due to the therapeutic and translational possibilities it offers. Different ways of taking advantage of the understanding of cell trafficking and EVs are being investigated, and their use as biomarkers or therapeutic targets is being investigated. The objective of this review is to collect the latest results and knowledge in this area with a specific focus on immune-mediated diseases. Although some promising results have been obtained, further knowledge is still needed, at both the basic and translational levels, to understand and modulate cellular traffic and EVs for better clinical management of these patients

    Gut Microbiota Metabolites in Major Depressive Disorder—Deep Insights into Their Pathophysiological Role and Potential Translational Applications

    No full text
    The gut microbiota is a complex and dynamic ecosystem essential for the proper functioning of the organism, affecting the health and disease status of the individuals. There is continuous and bidirectional communication between gut microbiota and the host, conforming to a unique entity known as “holobiont”. Among these crosstalk mechanisms, the gut microbiota synthesizes a broad spectrum of bioactive compounds or metabolites which exert pleiotropic effects on the human organism. Many of these microbial metabolites can cross the blood–brain barrier (BBB) or have significant effects on the brain, playing a key role in the so-called microbiota-gut-brain axis. An altered microbiota-gut-brain (MGB) axis is a major characteristic of many neuropsychiatric disorders, including major depressive disorder (MDD). Significative differences between gut eubiosis and dysbiosis in mental disorders like MDD with their different metabolite composition and concentrations are being discussed. In the present review, the main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology. Conclusions from promising translational approaches related to microbial metabolome will be addressed in more depth to discuss their possible clinical value in the management of MDD patients

    Modification of the Polymer of a Bone Cement with Biodegradable Microspheres of PLGA and Loading with Daptomycin and Vancomycin Improve the Response to Bone Tissue Infection

    No full text
    Chronic infections are one of the most serious adverse outcomes of prosthetic surgery. Prosthetic revision surgery using a bone cement loaded with antibiotics between the two stages of the surgery is commonly performed. However, this method often fails to reach the minimum inhibitory concentration and promotes antibiotic resistance, thus emphasizing the need for improving the current available therapies. Materials and methods: In this study, we performed a study of the in vivo response of a polymer-based construct of poly (lactic-co-glycolic acid) (PLGA) in the solid phase of Palacos R® in combination with vancomycin, daptomycin, and/or linezolid. To test its effectiveness, we applied an in vivo model, using both histological and immunohistochemical analyses to study the bone tissue. Results: The presence of PLGA in the combination of vancomycin with daptomycin showed the most promising results regarding the preservation of bone cytoarchitecture and S. aureus elimination. Conversely, the combination of vancomycin plus linezolid was associated with a loss of bone cytoarchitecture, probably related to an increased macrophage response and inefficient antimicrobial activity. Conclusions: The modification of Palacos R® bone cement with PLGA microspheres and its doping with the antibiotic daptomycin in combination with vancomycin improve the tissue response to bone infection

    Towards the Search for Potential Biomarkers in Osteosarcoma: State-of-the-Art and Translational Expectations

    No full text
    Osteosarcoma represents a rare cause of cancer in the general population, accounting for <1% of malignant neoplasms globally. Nonetheless, it represents the main cause of malignant bone neoplasm in children, adolescents and young adults under 20 years of age. It also presents another peak of incidence in people over 50 years of age and is associated with rheumatic diseases. Numerous environmental risk factors, such as bone diseases, genetics and a history of previous neoplasms, have been widely described in the literature, which allows monitoring a certain group of patients. Diagnosis requires numerous imaging tests that make it possible to stratify both the local involvement of the disease and its distant spread, which ominously determines the prognosis. Thanks to various clinical trials, the usefulness of different chemotherapy regimens, radiotherapy and surgical techniques with radical intent has now been demonstrated; these represent improvements in both prognosis and therapeutic approaches. Osteosarcoma patients should be evaluated in reference centres by multidisciplinary committees with extensive experience in proper management. Although numerous genetic and rheumatological diseases and risk factors have been described, the use of serological, genetic or other biomarkers has been limited in clinical practice compared to other neoplasms. This limits both the initial follow-up of these patients and screening in populations at risk. In addition, we cannot forget that the diagnosis is mainly based on the direct biopsy of the lesion and imaging tests, which illustrates the need to study new diagnostic alternatives. Therefore, the purpose of this study is to review the natural history of the disease and describe the main biomarkers, explaining their clinical uses, prognosis and limitations

    Clinical and Novel Biomarkers in Penile Carcinoma: A Prospective Review

    No full text
    Penile carcinoma is a rare urological neoplasia in men compared to other more common tumors, such as prostate, kidney, or bladder tumors. However, this neoplasm continues to affect a large number of patients worldwide, with developing countries presenting the highest incidence and mortality rates. Important risk factors such as the human papilloma virus, a factor affecting a large number of patients, have been described; however, few studies have evaluated screening programs in populations at risk for this disease, which severely affects the quality of life of older men. The management of these patients is usually complex, requiring surgical interventions that are not without risk and that have a great impact on the functionality of the male reproductive system. In addition, in cases of disseminated disease or with significant locoregional involvement, patients are evaluated by multidisciplinary oncological committees that can adjust the application of aggressive neoadjuvant or adjuvant chemotherapy on numerous occasions without clear improvement in survival. Chemotherapy regimens are usually aggressive, and unlike in other urological neoplasms, few advances have been made in the use of immunotherapy in these patients. The study of serological and histological biomarkers may help to better understand the underlying pathophysiology of these tumors and select patients who have a higher risk of metastatic progression. Similarly, the analysis of molecular markers will improve the availability of targeted therapies for the management of patients with disseminated disease that would benefit prognosis. Therefore, the purpose of this article is to summarize the main advances that have occurred in the development of serological and histological markers and their therapeutic implications in patients diagnosed with penile carcinoma, explaining the limitations that have been observed and analyzing future perspectives in the management of this disease

    Uterine Artery Embolization of Uterine Arteriovenous Malformation: A Systematic Review of Success Rate, Complications, and Posterior Pregnancy Outcomes

    No full text
    Uterine Arteriovenous Malformation (UAVM) is a rare but life-threating cause of uterine bleeding. The clinical management of this condition is challenging, and there is a need to describe the most adequate approach for these patients. Uterine artery embolization (UAE) is the most widely-published treatment in the literature in recent years, although there is a need to update the evidence on this treatment and to compare it with other available therapies. Thus, the objective of this systematic review is to quantify the efficacy of UAE of UAVM. In addition, we evaluated the clinical context of the patients included, the treatment complications, and the pregnancy outcomes after UAE. With this goal in mind, we finally included 371 patients spread over all continents who were included in 95 studies. Our results show that, similar to other medical therapies, the global success rate after embolization treatment was 88.4%, presenting a low risk of adverse outcomes (1.8%), even in women with later pregnancy (77% had no complications). To date, this is the largest systematic review conducted in this field, although there are still some points to address in future studies. The results obtained in our study should be outlined in UAE protocols and guidelines to aid in clinical decision-making in patients with UAVM
    corecore