5 research outputs found
Conception dâun dispositif de camouflage microfluidique
Depuis la rĂ©alisation dâun camouflage optique en 2006, le concept de masquer la prĂ©sence dâun objet au regard dâune certaine grandeur physique sâest rĂ©pandu dans tous les domaines de la physique. De nombreuses Ă©quipes se sont alors donnĂ© pour objectif de faire en sorte quâun trou dans un milieu 2D ne soit pas dĂ©tectable en mesurant un champ physique donnĂ© loin de celui-ci. La majoritĂ© de ces camouflages se sont appuyĂ©s sur des matĂ©riaux entiĂšrement structurĂ©s par lâhomme afin de prĂ©senter des propriĂ©tĂ©s inobservĂ©es dans la nature, appelĂ©s "mĂ©tamatĂ©riaux".
Bien que de nombreux camouflages physiques aient Ă©tĂ© rĂ©alisĂ©s grĂące Ă ceux-ci, Ă ce jour aucun dâentre eux ne peut dissimuler un objet Ă la fois dâun Ă©coulement (i.e. en pression et en vitesse) et de transport chimique ou thermique (i.e. en concentration ou tempĂ©rature). Cela serait pourtant trĂšs utile en gĂ©nie biomĂ©dical, et plus particuliĂšrement dans le domaine des biocapteurs, oĂč des surfaces sensibles sont placĂ©es dans un Ă©coulement microfluidique incident chargĂ© en espĂšces chimiques, incluant des parasites. Un problĂšme rĂ©current des biocapteurs est lâadsorption non spĂ©cifique de ces parasites dans les liaisons entre Ă©lĂ©ments biologiques et surfaces physiques, qui rĂ©duit la spĂ©cificitĂ©, la sensibilitĂ© et la reproductibilitĂ© des mesures. Un camouflage microfluidique dâĂ©coulement et de transport permettrait de protĂ©ger les surfaces sensibles de ce phĂ©nomĂšne, tout en Ă©liminant lâinfluence croisĂ©e que les surfaces voisines ont les unes sur les autres dans les Ă©tudes multiplexĂ©es.
Le travail prĂ©sentĂ© ici consiste Ă concevoir un tel dispositif de camouflage microfluidique. Dans le cadre des biocapteurs, il faut que le camouflage puisse ĂȘtre interrompu au moment oppor-tun, qui correspond typiquement au ratio maximal entre les concentrations dâanalytes et de parasites, puis rĂ©activĂ© aprĂšs mesures. MĂȘme si au prix dâune grande complexitĂ© structurelle certains mĂ©tamatĂ©riaux disposent de propriĂ©tĂ©s physiques modifiables, la zone camouflĂ©e reste quant Ă elle figĂ©e. Par consĂ©quent, on doit trouver une stratĂ©gie de dissimulation nâimpliquant pas de mĂ©tamatĂ©riaux solides. On choisit ici de se baser sur une rĂ©interprĂ©tation microflui-dique du "paradoxe de dâAlembert", inspirĂ©e par des analogies fortes avec les camouflages optiques.
Tout dâabord, un cadre thĂ©orique est donnĂ© Ă cette stratĂ©gie impliquant des obstacles flui-diques appelĂ©s "corps de Rankine". On justifie puis dĂ©veloppe des modĂšles dâĂ©coulements potentiels pour dĂ©crire leur contour. On trouve alors que le systĂšme est thĂ©oriquement apte Ă camoufler un obstacle en termes de champ de vitesses. Ensuite, on prend en compte les eËets visqueux pour trouver la relation entre la taille de lâobstacle et la chute de pression dans le systĂšme, qui sâavĂšre ĂȘtre dâordre 2 et permet donc un camouflage en pression eĂżcace pour des obstacles suĂżsamment petits. Une fois le camouflage caractĂ©risĂ© mĂ©caniquement, on propose un modĂšle analytique pour les Ă©changes dâespĂšces et de chaleur sây produisant. Cependant, ce modĂšle ne permet pas de conclure sur le camouflage en concentration ou en tempĂ©rature loin en aval.
Pour faire un pas vers le dimensionnement expĂ©rimental du camouflage, on passe Ă lâoutil numĂ©rique en rĂ©alisant des simulations par Ă©lĂ©ments finis. Celles-ci rĂ©vĂšlent lâinfluence quâont les diËĂ©rents paramĂštres du systĂšme sur lâallure du camouflage, et donnent une premiĂšre idĂ©e de la contrĂŽlabilitĂ© du systĂšme. Certains rĂ©sultats numĂ©riques permettent alors de condition-ner le camouflage chimique au caractĂšre convectif de lâĂ©coulement, associĂ© Ă un haut nombre de PĂ©clet. Une fois combinĂ©es Ă la thĂ©orie, ces simulations produisent un jeu de paramĂštres permettant lâimplĂ©mentation expĂ©rimentale dâun dispositif de camouflage. Plusieurs designs sont alors fabriquĂ©s et testĂ©s, jusquâĂ parvenir Ă une version stable et eĂżcace rĂ©alisĂ©e par impression 3D.
LâĂ©coulement et le transport dans ce dispositif sont alors Ă©valuĂ©s expĂ©rimentalement et com-parĂ©s aux rĂ©sultats thĂ©oriques, qui sont en trĂšs bon accord. Plus prĂ©cisĂ©ment, on montre que lâon dispose dâun contrĂŽle prĂ©cis sur la forme de lâinterface du camouflage ainsi que sur les Ă©changes chimiques ou thermiques y ayant lieu. On prouve aussi que le camouflage peut ĂȘtre modifiĂ©, activĂ© ou dĂ©sactivĂ© en quelques dizaines de secondes. On dĂ©montre ensuite quâil peut servir de filtre en gĂ©omĂ©trie "ouverte", et obĂ©it aux mĂȘmes lois dâĂ©chelles que les autres filtres microfluidiques classiques. Pour finir, on valide que ce camouflage peut eËectivement protĂ©ger une surface de lâadsorption dâune espĂšce indĂ©sirable dans un Ă©coulement pendant de longues pĂ©riodes de temps.
Un tel camouflage microfluidique peut donc fortement contribuer au gĂ©nie biomĂ©dical en rendant les biocapteurs moins vulnĂ©rables Ă lâadsorption non spĂ©cifique, mais dĂ©passe aussi ce cadre puisquâil peut fonctionner avec nâimporte quelle surface sensible, comme un tapis cellulaire ou des tranches de tissu. De plus, ce dispositif constitue un apport intĂ©ressant au secteur de la microfluidique "ouverte", dont il est Ă ce jour le seul filtre connu. Enfin, il prĂ©sente un fort attrait en physique de par sa contribution au domaine florissant des camouflages, en proposant une stratĂ©gie inĂ©dite de dissimulation pour les grandeurs dâĂ©coulement et de transport.----------ABSTRACT
Since the realization of an optical cloak in 2006, the idea of hiding the presence of an object with respect to a certain physical measure has spread to every field of physics. Many have tried before to make a hole in a 2D medium that could not be detected by measuring a given physical field afar. Most of these cloaks relied on materials entirely man-made to exhibit properties not observed in nature, called "metamaterials".
Although many physical cloaks have been obtained using such materials, to date none of them can conceal an object from both flow (i.e. pressure and velocity) and chemical or thermal transport (i.e. concentration or temperature). However, this would be very useful in biomedical engineering, especially in the field of biosensors, where sensitive surfaces are placed within an incident microfluidic flow loaded with chemical species, including parasites. A recurring biosensors problem is the non-specific adsorption of these parasites in the bonds between biological elements and the physical surface, which reduces the specificity, sensitivity and reproducibility of the measurements. A microfluidic flow and transport cloak would protect sensitive surfaces from this phenomenon, while eliminating the cross-influence that neighboring surfaces have on each other in multiplexed studies.
The work presented here consists in designing such a microfluidic cloaking device. In the context of biosensors, the cloak must be able to be deactivated at the appropriate time, which typically corresponds to the maximum ratio between analyte and parasite concentrations, and then reactivated after measurements. Even if at the cost of high structural complexity some metamaterials have modifiable physical properties, the concealed area remains fixed. Therefore, a cloaking strategy that does not involve solid metamaterials must be found. We choose here to rely on a microfluidic reinterpretation of the "dâAlembertâs paradox", inspired by strong analogies with optical cloaking.
First of all, a theoretical framework is given to this strategy involving fluidic obstacles called "Rankine bodies". We justify the use and develop potential flow models to describe their contours. It is then found that the system is theoretically capable of cloaking an obstacle in terms of velocity field. Then, the viscous eËects are taken into account to find the relationship between the size of the obstacle and the pressure drop in the system, which turns out to be a second order power law and thus allows an eËective pressure cloak for suĂżciently small impediments. Once the cloak is mechanically characterized, an analytical model is proposed to describe the species and heat exchanges occurring within it. However, this model does not allow a firm conclusion about concentration (or temperature) cloaking far downstream.To take a step towards realizing the cloak experimentally, we switch to the numerical tool by carrying out finite element simulations. These reveal the influence of the various system parameters on the cloak shape and give us a first glance at the controllability of the system. Some of these numerical results can be used to condition the chemical cloaking eĂżciency to the convective aspect of the flow, associated with a high PĂ©clet number. Once combined with the theory, these simulations produce a set of parameters allowing the experimental implementation of a cloaking device. Several designs are then manufactured and tested, until a stable and eĂżcient version is produced by 3D printing.
Flow and transport in this device are then experimentally investigated and compared to the theoretical results, which are in very good agreement. Specifically, it is shown that one has a precise control over the shape of the cloak interface as well as the chemical or thermal exchanges taking place in it. It is also shown that the cloak can be modified, activated or deactivated in a few tens of seconds. It is then demonstrated that it can be used as a filter in an "open-space" geometry and obeys the same scaling laws as other conventional microfluidic filters. Finally, we validate that this cloak can eËectively protect a surface adsorption in an undesirable species flow for long periods of time.
Such microfluidic cloak can therefore make a significant contribution to biomedical engineer-ing by making biosensors less vulnerable to non-specific adsorption, but its applications also go beyond this field since the cloak can work with any sensitive surface, such as a cell layers or slices of tissue. Moreover, this device is an interesting contribution to the "open" microfluidics sector, of which it is to date the only known filter. Finally, it has a strong appeal in physics due to its contribution to the flourishing field of cloaking, by proposing a novel concealment strategy for flow and transport quantities
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly