3 research outputs found

    Top Quarks, Axigluons and Charge Asymmetries at Hadron Colliders

    Get PDF
    Axigluons are colored heavy neutral gauge boson that couple to quarks through an axial vector current and the same strong coupling as gluons. The most important model-independent manifestation of axigluons is the generation of a forward--backward asymmetry in top-antitop quark production at ppˉp\bar{p} collisions which originates from the charge asymmetry. We update our previous analysis for the inclusive QCD induced forward--backward asymmetry and define a new observable which is more sensitive to the effect than the forward--backward asymmetry. Furthermore, we find a lower limit of 1.2 TeV at 90% C.L. on the axigluon mass from recent measurements of the asymmetry at Tevatron. Also at LHC, the charge asymmetry is sizable in suitably selected samples. We evaluate this asymmetry in the central region for different selection cuts and show that, like at Tevatron, the charge asymmetry can probe larger values of the axigluon mass than the dijet mass distribution.Comment: 13 pages, 9 figure

    Finite Element Method and Cut Bar Method-Based Comparison Under 150°, 175° and 310 °C for an Aluminium Bar

    No full text
    Analyses were developed using a finite element method of the experimental measurement system for thermal conductivity of solid materials, used by the Centro Nacional de Metrología (CENAM), which operates under a condition of permanent heat flow. The CENAM implemented a thermal conductivity measurement system for solid materials limited in its operating intervals to measurements of maximum 300 ° C for solid conductive materials. However, the development of new materials should be characterised and studied to know their thermophysical properties and ensure their applications to any temperature conditions. These task demand improvements in the measurement system, which are proposed in the present work. Improvements are sought to achieve high-temperature measurements in metallic materials and conductive solids, and this system may also cover not only metallic materials. Simulations were performed to compare the distribution of temperatures developed in the measurement system as well as the radial heat leaks, which affect the measurement parameters for an aluminium bar, and uses copper bars as reference material. The simulations were made for measurements of an aluminium bar at a temperature of 150 ° C, in the plane and 3D, another at 175 ° C and one more known maximum temperature reached by a sample of the aluminium bar with a new heater acquired at 310 ° C
    corecore