9,317 research outputs found
Solving frustration-free spin systems
We identify a large class of quantum many-body systems that can be solved
exactly: natural frustration-free spin-1/2 nearest-neighbor Hamiltonians on
arbitrary lattices. We show that the entire ground state manifold of such
models can be found exactly by a tensor network of isometries acting on a space
locally isomorphic to the symmetric subspace. Thus, for this wide class of
models real-space renormalization can be made exact. Our findings also imply
that every such frustration-free spin model satisfies an area law for the
entanglement entropy of the ground state, establishing a novel large class of
models for which an area law is known. Finally, we show that our approach gives
rise to an ansatz class useful for the simulation of almost frustration-free
models in a simple fashion, outperforming mean field theory.Comment: 5 pages, 1 figur
Gamma-Ray Bursts observed by XMM-Newton
Analysis of observations with XMM-Newton have made a significant contribution
to the study of Gamma-ray Burst (GRB) X-ray afterglows. The effective area,
bandpass and resolution of the EPIC instrument permit the study of a wide
variety of spectral features. In particular, strong, time-dependent, soft X-ray
emission lines have been discovered in some bursts. The emission mechanism and
energy source for these lines pose major problems for the current generation of
GRB models. Other GRBs have intrinsic absorption, possibly related to the
environment around the progenitor, or possible iron emission lines similar to
those seen in GRBs observed with BeppoSAX. Further XMM-Newton observations of
GRBs discovered by the Swift satellite should help unlock the origin of the GRB
phenomenon over the next few years.Comment: To appear in proceedings of the "XMM-Newton EPIC Consortium meeting,
Palermo, 2003 October 14-16", published in Memorie della Societa Astronomica
Italian
Towards Real-Time Information Processing of Sensor Network Data using Computationally Efficient Multi-output Gaussian Processes
In this paper, we describe a novel, computationally efficient algorithm that facilitates the autonomous acquisition of readings from sensor networks (deciding when and which sensor to acquire readings from at any time), and which can, with minimal domain knowledge, perform a range of information processing tasks including modelling the accuracy of the sensor readings, predicting the value of missing sensor readings, and predicting how the monitored environmental variables will evolve into the future. Our motivating scenario is the need to provide situational awareness support to first responders at the scene of a large scale incident, and to this end, we describe a novel iterative formulation of a multi-output Gaussian process that can build and exploit a probabilistic model of the environmental variables being measured (including the correlations and delays that exist between them). We validate our approach using data collected from a network of weather sensors located on the south coast of England
Information Agents for Pervasive Sensor Networks
In this paper, we describe an information agent, that resides on a mobile computer or personal digital assistant (PDA), that can autonomously acquire sensor readings from pervasive sensor networks (deciding when and which sensor to acquire readings from at any time). Moreover, it can perform a range of information processing tasks including modelling the accuracy of the sensor readings, predicting the value of missing sensor readings, and predicting how the monitored environmental parameters will evolve into the future. Our motivating scenario is the need to provide situational awareness support to first responders at the scene of a large scale incident, and we describe how we use an iterative formulation of a multi-output Gaussian process to build a probabilistic model of the environmental parameters being measured by local sensors, and the correlations and delays that exist between them. We validate our approach using data collected from a network of weather sensors located on the south coast of England
Achievable Qubit Rates for Quantum Information Wires
Suppose Alice and Bob have access to two separated regions, respectively, of
a system of electrons moving in the presence of a regular one-dimensional
lattice of binding atoms. We consider the problem of communicating as much
quantum information, as measured by the qubit rate, through this quantum
information wire as possible. We describe a protocol whereby Alice and Bob can
achieve a qubit rate for these systems which is proportional to N^(-1/3) qubits
per unit time, where N is the number of lattice sites. Our protocol also
functions equally in the presence of interactions modelled via the t-J and
Hubbard models
The SSS phase of RS Ophiuchi observed with Chandra and XMM-Newton I.: Data and preliminary Modeling
The phase of Super-Soft-Source (SSS) emission of the sixth recorded outburst
of the recurrent nova RS Oph was observed twice with Chandra and once with
XMM-Newton. The observations were taken on days 39.7, 54.0, and 66.9 after
outburst. We confirm a 35-sec period on day 54.0 and found that it originates
from the SSS emission and not from the shock. We discus the bound-free
absorption by neutral elements in the line of sight, resonance absorption lines
plus self-absorbed emission line components, collisionally excited emission
lines from the shock, He-like intersystem lines, and spectral changes during an
episode of high-amplitude variability. We find a decrease of the oxygen K-shell
absorption edge that can be explained by photoionization of oxygen. The
absorption component has average velocities of -1286+-267 km/s on day 39.7 and
of -771+-65 km/s on day 66.9. The wavelengths of the emission line components
are consistent with their rest wavelengths as confirmed by measurements of
non-self absorbed He-like intersystem lines. We have evidence that these lines
originate from the shock rather than the outer layers of the outflow and may be
photoexcited in addition to collisional excitations. We found collisionally
excited emission lines that are fading at wavelengths shorter than 15A that
originate from the radiatively cooling shock. On day 39.5 we find a systematic
blue shift of -526+-114 km/s from these lines. We found anomalous He-like f/i
ratios which indicates either high densities or significant UV radiation near
the plasma where the emission lines are formed. During the phase of strong
variability the spectral hardness light curve overlies the total light curve
when shifted by 1000sec. This can be explained by photoionization of neutral
oxygen in the line of sight if the densities of order 10^{10}-10^{11} cm^{-3}.Comment: 16 pages, 10 figures, 4 tables. Accepted by ApJ; v2: Co-author
Woodward adde
Optimisation of the Swift X-ray follow-up of Advanced LIGO and Virgo gravitational wave triggers in 2015--16
One of the most exciting near-term prospects in physics is the potential
discovery of gravitational waves by the advanced LIGO and Virgo detectors. To
maximise both the confidence of the detection and the science return, it is
essential to identify an electromagnetic counterpart. This is not trivial, as
the events are expected to be poorly localised, particularly in the near-term,
with error regions covering hundreds or even thousands of square degrees. In
this paper we discuss the prospects for finding an X-ray counterpart to a
gravitational wave trigger with the Swift X-ray Telescope, using the assumption
that the trigger is caused by a binary neutron star merger which also produces
a short gamma-ray burst. We show that it is beneficial to target galaxies
within the GW error region, highlighting the need for substantially complete
galaxy catalogues out to distances of 300 Mpc. We also show that nearby,
on-axis short GRBs are either extremely rare, or are systematically less
luminous than those detected to date. We consider the prospects for detecting
afterglow emission from an an off-axis GRB which triggered the GW facilities,
finding that the detectability, and the best time to look, are strongly
dependent on the characteristics of the burst such as circumburst density and
our viewing angle.Comment: 17 pages, 14 figures. Accepted for publication in MNRA
A universal GRB photon energy-peak luminosity relation
The energetics and emission mechanism of GRBs are not well understood. Here
we demonstrate that the instantaneous peak flux or equivalent isotropic peak
luminosity, L_iso ergs s^-1, rather than the integrated fluence or equivalent
isotropic energy, E_iso ergs, underpins the known high-energy correlations.
Using new spectral/temporal parameters calculated for 101 bursts with redshifts
from BATSE, BeppoSAX, HETE-II and Swift we describe a parameter space which
characterises the apparently diverse properties of the prompt emission. We show
that a source frame characteristic-photon-energy/peak luminosity ratio, K_z,
can be constructed which is constant within a factor of 2 for all bursts
whatever their duration, spectrum, luminosity and the instrumentation used to
detect them. The new parameterization embodies the Amati relation but indicates
that some correlation between E_peak and E_iso follows as a direct mathematical
inference from the Band function and that a simple transformation of E_iso to
L_iso yields a universal high energy correlation for GRBs. The existence of K_z
indicates that the mechanism responsible for the prompt emission from all GRBs
is probably predominantly thermal.Comment: Submitted to Ap
Where to go in the near future: diverging perspectives on online public service delivery
Although the electronic government is under heavy development, a clear vision doesn’t seem to exist. In this study 20 interviews among leaders in the field of e-government in the Netherlands resulted in different perspectives on the future of electronic public service delivery. The interviews revealed different objectives and interpretations of the presuppositions regarding citizens’ desires. Opinions about channel approaches and ‘trigger services’ appeared to vary. Furthermore, the respondents didn’t agree on the number of contact moments between citizen and government, had different opinions about digital skills, pled for various designs of the electronic government and placed the responsibility for electronic service delivery in different hands. Conclusion is that there is a lack of concepts on how to do things. Everybody talks about eGovernment, but all have different interpretations. \u
Physical consequences of PNP and the DMRG-annealing conjecture
Computational complexity theory contains a corpus of theorems and conjectures
regarding the time a Turing machine will need to solve certain types of
problems as a function of the input size. Nature {\em need not} be a Turing
machine and, thus, these theorems do not apply directly to it. But {\em
classical simulations} of physical processes are programs running on Turing
machines and, as such, are subject to them. In this work, computational
complexity theory is applied to classical simulations of systems performing an
adiabatic quantum computation (AQC), based on an annealed extension of the
density matrix renormalization group (DMRG). We conjecture that the
computational time required for those classical simulations is controlled
solely by the {\em maximal entanglement} found during the process. Thus, lower
bounds on the growth of entanglement with the system size can be provided. In
some cases, quantum phase transitions can be predicted to take place in certain
inhomogeneous systems. Concretely, physical conclusions are drawn from the
assumption that the complexity classes {\bf P} and {\bf NP} differ. As a
by-product, an alternative measure of entanglement is proposed which, via
Chebyshev's inequality, allows to establish strict bounds on the required
computational time.Comment: Accepted for publication in JSTA
- …