20,848 research outputs found

    The structure of spider's web fast escaping sets

    Get PDF
    Building on recent work by Rippon and Stallard, we explore the intricate structure of the spider's web fast escaping sets associated with certain transcendental entire functions. Our results are expressed in terms of the components of the complement of the set (the 'holes' in the web). We describe the topology of such components and give a characterisation of their possible orbits under iteration. We show that there are uncountably many components having each of a number of orbit types, and we prove that components with bounded orbits are quasiconformally homeomorphic to components of the filled Julia set of a polynomial. We also show that there are singleton periodic components and that these are dense in the Julia set.Comment: 18 page

    Holographic fluctuations and the principle of minimal complexity

    Get PDF
    We discuss, from a quantum information perspective, recent proposals of Maldacena, Ryu, Takayanagi, van Raamsdonk, Swingle, and Susskind that spacetime is an emergent property of the quantum entanglement of an associated boundary quantum system. We review the idea that the informational principle of minimal complexity determines a dual holographic bulk spacetime from a minimal quantum circuit U preparing a given boundary state from a trivial reference state. We describe how this idea may be extended to determine the relationship between the fluctuations of the bulk holographic geometry and the fluctuations of the boundary low-energy subspace. In this way we obtain, for every quantum system, an Einstein-like equation of motion for what might be interpreted as a bulk gravity theory dual to the boundary system.Comment: 10 pages, 4 figure
    • …
    corecore