16 research outputs found

    Calculation of Effective Coulomb Interaction for Pr3+Pr^{3+}, U4+U^{4+}, and UPt3UPt_3

    Full text link
    In this paper, the Slater integrals for a screened Coulomb interaction of the the Yukawa form are calculated and by fitting the Thomas-Fermi wavevector, good agreement is obtained with experiment for the multiplet spectra of Pr3+Pr^{3+} and U4+U^{4+} ions. Moreover, a predicted multiplet spectrum for the heavy fermion superconductor UPt3UPt_3 is shown with a calculated Coulomb U of 1.6 eV. These effective Coulomb interactions, which are quite simple to calculate, should be useful inputs to further many-body calculations in correlated electron metals.Comment: 8 pages, revtex, 3 uuencoded postscript figure

    Genomics of Pseudomonas fluorescens Pf-5

    No full text

    Structural Aspect of Platinum Coordination Compounds: Part II. Monomeric Pt11 Compounds with PtA3B and PtA2B2 Composition

    No full text

    Status and future perspectives for lattice gauge theory calculations to the exascale and beyond

    No full text

    The Present and Future of QCD

    No full text
    International audienceThis White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD Town Meeting that took place September 23-25, 2022 at MIT, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. The meeting highlighted progress in Quantum Chromodynamics (QCD) nuclear physics since the 2015 LRP (LRP15) and identified key questions and plausible paths to obtaining answers to those questions, defining priorities for our research over the coming decade. In defining the priority of outstanding physics opportunities for the future, both prospects for the short (~ 5 years) and longer term (5-10 years and beyond) are identified together with the facilities, personnel and other resources needed to maximize the discovery potential and maintain United States leadership in QCD physics worldwide. This White Paper is organized as follows: In the Executive Summary, we detail the Recommendations and Initiatives that were presented and discussed at the Town Meeting, and their supporting rationales. Section 2 highlights major progress and accomplishments of the past seven years. It is followed, in Section 3, by an overview of the physics opportunities for the immediate future, and in relation with the next QCD frontier: the EIC. Section 4 provides an overview of the physics motivations and goals associated with the EIC. Section 5 is devoted to the workforce development and support of diversity, equity and inclusion. This is followed by a dedicated section on computing in Section 6. Section 7 describes the national need for nuclear data science and the relevance to QCD research

    The present and future of QCD

    No full text
    International audienceThis White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades
    corecore