5 research outputs found

    Evaluation of the effectiveness of X-ray protective aprons in experimental and practical fields

    Get PDF
    Few practical evaluation studies have been conducted on X-ray protective aprons in workplaces. We examined the effects of exchanging the protective apron type with regard to exposure reduction in experimental and practical fields, and discuss the effectiveness of X-ray protective aprons. Experimental field evaluations were performed by the measurement of the X-ray transmission rates of protective aprons. Practical field evaluations were performed by the estimation of the differences in the transit doses before and after the apron exchange. A 0.50-mm lead-equivalent-thick non-lead apron had the lowest transmission rate among the 7 protective aprons, but weighed 10.9 kg and was too heavy. The 0.25 and 0.35-mm lead-equivalent-thick non-lead aprons differed little in the practical field of interventional radiology. The 0.35-mm lead apron had lower X-ray transmission rates and transit doses than the 0.25-mm lead-equivalent-thick non-lead apron, and each of these differences exceeded 8 % in the experimental field and approximately 0.15 mSv/month in the practical field of computed tomography (p < 0.01). Therefore, we concluded that the 0.25-mm lead-equivalent-thick aprons and 0.35-mm lead apron are effective for interventional radiology operators and computed tomography nurses, respectively

    A novel removable shield attached to C-arm units against scattered X-rays from a patient\u27s side

    Get PDF
    Objectives We invented a drape-like shield against scattered X-rays that can safely come into contact with medical equipment or people during fluoroscopically guided procedures. The shield can be easily removed from a C-arm unit using one hand. We evaluated the use of the novel removable shield during the endoscopic retrograde cholangiopancreatography (ERCP) procedure. Methods We measured the dose rate of scattered X-rays around endoscopists with and without this removable shield and surveyed the occupational doses to the ERCP staff. We also examined the endurance of the shield. Results The removable shield reduced the dose rate of scattered X-rays to one-tenth and reduced the monthly dose to an endoscopist by at least two-fifths. For 2.5 years, there was no damage to the shield and no loosening of the seam. The bonding of the hook-and-loop fasteners did not weaken, although the powerful double-sided tapes made especially for plastic did. Conclusions The removable shield can reduce radiation exposure to the ERCP staff and may contribute to reducing the exposure to the eye lenses of operators. It would also be possible to expand its use to other fluoroscopically guided procedures besides ERCP because it is a light, simple, and useful device. Key Points • We invented a shield that can be removed from C-arm units with one hand.• The removable shield reduces the dose rate of X-rays to one-tenth.• The removable shield reduces operator exposure by two-fifths.• The removable shield is durable, lasting for several years.• The drape-like removable shield is light, simple, and useful. © 2014 European Society of Radiology

    Evaluation of the effectiveness of X-ray protective aprons in experimental and practical fields

    Get PDF
    Few practical evaluation studies have been conducted on X-ray protective aprons in workplaces. We examined the effects of exchanging the protective apron type with regard to exposure reduction in experimental and practical fields, and discuss the effectiveness of X-ray protective aprons. Experimental field evaluations were performed by the measurement of the X-ray transmission rates of protective aprons. Practical field evaluations were performed by the estimation of the differences in the transit doses before and after the apron exchange. A 0.50-mm lead-equivalent-thick non-lead apron had the lowest transmission rate among the 7 protective aprons, but weighed 10.9 kg and was too heavy. The 0.25 and 0.35-mm lead-equivalent-thick non-lead aprons differed little in the practical field of interventional radiology. The 0.35-mm lead apron had lower X-ray transmission rates and transit doses than the 0.25-mm lead-equivalent- thick non-lead apron, and each of these differences exceeded 8% in the experimental field and approximately 0.15 mSv/month in the practical field of computed tomography (p <0.01). Therefore, we concluded that the 0.25-mm lead-equivalent-thick aprons and 0.35-mm lead apron are effective for interventional radiology operators and computed tomography nurses, respectively. © The Author(s) 2013

    Evaluation of the effectiveness of X-ray protective aprons in experimental and practical fields

    No full text
    Abstract Few practical evaluation studies have been conducted on X-ray protective aprons in workplaces. We examined the effects of exchanging the protective apron type with regard to exposure reduction in experimental and practical fields, and discuss the effectiveness of X-ray protective aprons. Experimental field evaluations were performed by the measurement of the X-ray transmission rates of protective aprons. Practical field evaluations were performed by the estimation of the differences in the transit doses before and after the apron exchange. A 0.50-mm lead-equivalent-thick non-lead apron had the lowest transmission rate among the 7 protective aprons, but weighed 10.9 kg and was too heavy. The 0.25 and 0.35-mm lead-equivalent-thick non-lead aprons differed little in the practical field of interventional radiology. The 0.35-mm lead apron had lower X-ray transmission rates and transit doses than the 0.25-mm lead-equivalent-thick non-lead apron, and each of these differences exceeded 8 % in the experimental field and approximately 0.15 mSv/month in the practical field of computed tomography (p \ 0.01). Therefore, we concluded that the 0.25-mm lead-equivalent-thick aprons and 0.35-mm lead apron are effective for interventional radiology operators and computed tomog-raphy nurses, respectively
    corecore