21 research outputs found
Analysis of air pollution in urban areas with Airviro dispersion model—A case study in the city of Sheffield, United Kingdom
Two air pollutants, oxides of nitrogen (NOx) and particulate matter (PM10), are monitored and modelled employing Airviro air quality dispersion modelling system in Sheffield, United Kingdom. The aim is to determine the most significant emission sources and their spatial variability. NOx emissions (ton/year) from road traffic, point and area sources for the year 2017 were 5370, 6774, and 2425, whereas those of PM10 (ton/year) were 345, 1449, and 281, respectively, which are part of the emission database. The results showed three hotspots of NOx, namely the Sheffield City Centre, Darnall and Tinsley Roundabout (M1 J34S). High PM10 concentrations were shown mainly between Sheffield Forgemasters International (a heavy engineering steel company) and Meadowhall Shopping Centre. Several emission scenarios were tested, which showed that NOx concentrations were mainly controlled by road traffic, whereas PM10 concentrations were controlled by point sources. Spatiotemporal variability and public exposure to air pollution were analysed. NOx concentration was greater than 52 µg/m3 in about 8 km2 area, where more than 66 thousand people lived. Models validated by observations can be used to fill in spatiotemporal gaps in measured data. The approach used presents spatiotemporal situation awareness maps that could be used for decision making and improving the urban infrastructure
Quantification of airborne road-side pollution carbon nanoparticles
Roadside diesel particulate matter (DPM) has been collected using a P-Trak particle counter with modified inlet filter. The P-Trak monitor assesses ultrafine particle number in real-time rather than accumulated PM mass over a period of time, which is important for DPM where the particles are often <100nm in size. Collected pollution particulate matter was analysed by SEM and TEM, quantifying particle size, morphology and size distribution. The primary carbon nanoparticles form complex fractal aggregates with open porous morphologies and evidence of secondary carbon deposition. For the chosen collection sites, occasional but significantly larger mineral and fibrous particles were identified. The assessment of airborne particles by mass collection (TEOM), particle-number (P-Trak) and TEM methods is discussed
Analysing the performance of low-cost air quality sensors, their drivers, relative benefits and calibration in cities—a case study in Sheffield
Traditional real-time air quality monitoring instruments are expensive to install and maintain; therefore, such existing air quality monitoring networks are sparsely deployed and lack the measurement density to develop high-resolution spatiotemporal air pollutant maps. More recently, low-cost sensors have been used to collect high-resolution spatial and temporal air pollution data in real-time. In this paper, for the first time, Envirowatch E-MOTEs are employed for air quality monitoring as a case study in Sheffield. Ten E-MOTEs were deployed for a year (October 2016 to September 2017) monitoring several air pollutants (NO, NO2, CO) and meteorological parameters. Their performance was compared to each other and to a reference instrument installed nearby. E-MOTEs were able to successfully capture the temporal variability such as diurnal, weekly and annual cycles in air pollutant concentrations and demonstrated significant similarity with reference instruments. NO2 concentrations showed very strong positive correlation between various sensors. Mostly, correlation coefficients (r values) were greater than 0.92. CO from different sensors also had r values mostly greater than 0.92; however, NO showed r value less than 0.5. Furthermore, several multiple linear regression models (MLRM) and generalised additive models (GAM) were developed to calibrate the E-MOTE data and reproduce NO and NO2 concentrations measured by the reference instruments. GAMs demonstrated significantly better performance than linear models by capturing the non-linear association between the response and explanatory variables. The best GAM developed for reproducing NO2 concentrations returned values of 0.95, 3.91, 0.81, 0.005 and 0.61 for factor of two (FAC2), root mean square error (RMSE), coefficient of determination (R2), normalised mean biased (NMB) and coefficient of efficiency (COE), respectively. The low-cost sensors offer a more affordable alternative for providing real-time high-resolution spatiotemporal air quality and meteorological parameter data with acceptable performance