975 research outputs found

    Joseph Decaisne

    Get PDF

    Factors Associated with Women’s Chronic Disease Management: Associations of Healthcare Frustrations, Physician Support, and Self-Care Needs

    Get PDF
    Previous research emphasizes the importance of reducing healthcare frustrations and enhancing physician supports to help patients engage in recommended healthcare regimens. However, less is known about how these factors are associated with aging women's knowledge about self-care behavior. This study examined the sociodemographics, health indicators, healthcare-related frustrations, and perceptions of physician support associated with middle-aged and older adult females' self-reported need for help to learn how to take better care of their health. Data were analyzed from 287 females with one or more chronic conditions who completed The National Council on Aging (NCOA) Chronic Care Survey. A logistic regression model was developed. Women who were non-White (OR = 2.26, P = 0.049) were more likely to need help learning how to better manage their health. Those who had some college education or more (OR = 0.55, P = 0.044) and lower healthcare-related frustrations (OR = 0.44, P = 0.017) and perceived to have more physician support (OR = 0.49, P = 0.033) were less likely to need help learning how to better manage their health. Findings can inform the planning, implementation, assessment, and dissemination of evidence-based self-management programs for middle-aged and older women within and outside of clinical settings

    Fostering collaborative research for rare genetic disease: The example of Niemann-Pick type C disease

    Get PDF
    Rare disease represents one of the most significant issues facing the medical community and health care providers worldwide, yet the majority of these disorders never emerge from their obscurity, drawing little attention from the medical community or the pharmaceutical industry. The challenge therefore is how best to mobilize rare disease stakeholders to enhance basic, translational and clinical research to advance understanding of pathogenesis and accelerate therapy development. Here we describe a rare, fatal brain disorder known as Niemann-Pick type C (NPC) and an innovative research collaborative known as Support of Accelerated Research for NPC (SOAR-NPC) which illustrates one pathway through which knowledge of a rare disease and its possible treatments are being successfully advanced. Use of the “SOAR” mechanism, we believe, offers a blueprint for similar advancement for many other rare disorders

    Fingering Instability in Combustion

    Full text link
    A thin solid (e.g., paper), burning against an oxidizing wind, develops a fingering instability with two decoupled length scales. The spacing between fingers is determined by the P\'eclet number (ratio between advection and diffusion). The finger width is determined by the degree two dimensionality. Dense fingers develop by recurrent tip splitting. The effect is observed when vertical mass transport (due to gravity) is suppressed. The experimental results quantitatively verify a model based on diffusion limited transport

    Field Guide to Exhumed Major Faults in Southern California

    Get PDF
    This field guide provides an overview of exposures and provides a field trip guide to localities of exhumed faults in southern California. We focus on exposures of faults that are documented or inferred to be exhumed from seismogenic depths. The goal of this guidebook is to provide geoscientists who are interested in fault zone mechanics and earthquake processes a summary of the results of the work on these sites

    A characterization of Gaucher iPS-derived astrocytes: Potential implications for Parkinson\u27s disease

    Get PDF
    While astrocytes, the most abundant cells found in the brain, have many diverse functions, their role in the lysosomal storage disorder Gaucher disease (GD) has not been explored. GD, resulting from the inherited deficiency of the enzyme glucocerebrosidase and subsequent accumulation of glucosylceramide and its acylated derivative glucosylsphingosine, has both non-neuronopathic (GD1) and neuronopathic forms (GD2 and 3). Furthermore, mutations in GBA1, the gene mutated in GD, are an important risk factor for Parkinson\u27s disease (PD). To elucidate the role of astrocytes in the disease pathogenesis, we generated iAstrocytes from induced pluripotent stem cells made from fibroblasts taken from controls and patients with GD1, with and without PD. We also made iAstrocytes from an infant with GD2, the most severe and progressive form, manifesting in infancy. Gaucher iAstrocytes appropriately showed deficient glucocerebrosidase activity and levels and substrate accumulation. These cells exhibited varying degrees of astrogliosis, Glial Fibrillary Acidic Protein (GFAP) up-regulation and cellular proliferation, depending on the level of residual glucocerebrosidase activity. Glutamte uptake assays demonstrated that the cells were functionally active, although the glutamine transporter EEAT2 was upregulated and EEAT1 downregulated in the GD2 samples. GD2 iAstrocytes were morphologically different, with severe cytoskeletal hypertrophy, overlapping of astrocyte processes, pronounced up-regulation of GFAP and S100β, and significant astrocyte proliferation, recapitulating the neuropathology observed in patients with GD2. Although astrocytes do not express α-synuclein, when the iAstrocytes were co-cultured with dopaminergic neurons generated from the same iPSC lines, excessive α-synuclein released from neurons was endocytosed by astrocytes, translocating into lysosomes. Levels of aggregated α-synuclein increased significantly when cells were treated with monomeric or fibrillar α-synuclein. GD1-PD and GD2 iAstrocytes also exhibited impaired Cathepsin D activity, leading to further α-synuclein accumulation. Cytokine and chemokine profiling of the iAstrocytes demonstrated an inflammatory response. Thus, in patients with GBA1-associated parkinsonism, astrocytes appear to play a role in α-synuclein accumulation and processing, contributing to neuroinflammation
    corecore