13,789 research outputs found
Ionization toward the high-mass star-forming region NGC 6334 I
Context. Ionization plays a central role in the gas-phase chemistry of
molecular clouds. Since ions are coupled with magnetic fields, which can in
turn counteract gravitational collapse, it is of paramount importance to
measure their abundance in star-forming regions. Aims. We use spectral line
observations of the high-mass star-forming region NGC 6334 I to derive the
abundance of two of the most abundant molecular ions, HCO+ and N2H+, and
consequently, the cosmic ray ionization rate. In addition, the line profiles
provide information about the kinematics of this region. Methods. We present
high-resolution spectral line observations conducted with the HIFI instrument
on board the Herschel Space Observatory of the rotational transitions with Jup
> 5 of the molecular species C17O, C18O, HCO+, H13CO+, and N2H+. Results. The
HCO+ and N2H+ line profiles display a redshifted asymmetry consistent with a
region of expanding gas. We identify two emission components in the spectra,
each with a different excitation, associated with the envelope of NGC 6334 I.
The physical parameters obtained for the envelope are in agreement with
previous models of the radial structure of NGC 6334 I based on submillimeter
continuum observations. Based on our new Herschel/HIFI observations, combined
with the predictions from a chemical model, we derive a cosmic ray ionization
rate that is an order of magnitude higher than the canonical value of 10^(-17)
s-1. Conclusions. We find evidence of an expansion of the envelope surrounding
the hot core of NGC 6334 I, which is mainly driven by thermal pressure from the
hot ionized gas in the region. The ionization rate seems to be dominated by
cosmic rays originating from outside the source, although X-ray emission from
the NGC 6334 I core could contribute to the ionization in the inner part of the
envelope.Comment: This paper contains a total of 10 figures and 3 table
Ferrotoroidic Moment as a Quantum Geometric Phase
We present a geometric characterization of the ferrotoroidic moment in terms
of a set of Abelian Berry phases. We also introduce a fundamental complex
quantity which provides an alternative way to calculate the ferrotoroidic
moment and its moments, and is derived from a second order tensor. This
geometric framework defines a natural computational approach for density
functional and many-body theories
Recolonization of Raoul Island by Kermadec red-crowned parakeets Cyanoramphus novaezelandiae cyanurus after eradication of invasive predators, Kermadec Islands archipelago, New Zealand
The Kermadec red-crowned parakeet Cyanoramphus novaezelandiae was driven to extinction on Raoul Island over 150 years ago by introduced cats Felis catus and rats (Rattus norvegicus and R. exulans). These predators were eradicated from the island (2,938 ha) between 2002-04 during the world’s largest multispecies eradication project. In 2008 we documented a unique recolonisation event when parakeets were observed to have returned to Raoul, presumably from a nearby island group, The Herald Islets (51 ha). We captured and aged 100 parakeets, of which 44% were born in 2008, and breeding was observed on Raoul Island. This represents the first evidence of nesting of this species on Raoul Island since 1836. Our findings highlight the global conservation potential for island avifaunas by prioritising eradication areas through consideration of proximity of remnant populations to target management locations, instead of the classical translocation approach alone. The natural recolonization of parakeets on Raoul Island from a satellite source population is to our knowledge, a first for parrot conservation and the first documented population expansion and island recolonization of a parrot species after removal of invasive predators
Una aproximación al filtrado adaptativo para la cancelación de ruidos en señales de voz monofónicas
Generalmente, el uso de filtros adaptativos para la cancelación de ruidos presentes en señales de voz implica el uso de dos canales de audio donde se presente la señal a filtrar y una referencia del ruido. Dentro del trabajo se propuso una metodologÃa de filtrado de señales monofónicas donde a partir de la transformada de Hilbert se extraen los ruidos presentes en los silencios de la prosodia y se utilizan como referencia para la adaptación del filtro utilizando gradiente descendente. Finalmente se realizaron dos pruebas agregando ruidos artificiales adicionales a los ruidos naturales sobre los audios a filtrar
Introduction to Quantum Information Processing
As a result of the capabilities of quantum information, the science of
quantum information processing is now a prospering, interdisciplinary field
focused on better understanding the possibilities and limitations of the
underlying theory, on developing new applications of quantum information and on
physically realizing controllable quantum devices. The purpose of this primer
is to provide an elementary introduction to quantum information processing, and
then to briefly explain how we hope to exploit the advantages of quantum
information. These two sections can be read independently. For reference, we
have included a glossary of the main terms of quantum information.Comment: 48 pages, to appear in LA Science. Hyperlinked PDF at
http://www.c3.lanl.gov/~knill/qip/prhtml/prpdf.pdf, HTML at
http://www.c3.lanl.gov/~knill/qip/prhtm
Hierarchical mean-field approach to the - Heisenberg model on a square lattice
We study the quantum phase diagram and excitation spectrum of the frustrated
- spin-1/2 Heisenberg Hamiltonian. A hierarchical mean-field
approach, at the heart of which lies the idea of identifying {\it relevant}
degrees of freedom, is developed. Thus, by performing educated, manifestly
symmetry preserving mean-field approximations, we unveil fundamental properties
of the system. We then compare various coverings of the square lattice with
plaquettes, dimers and other degrees of freedom, and show that only the {\it
symmetric plaquette} covering, which reproduces the original Bravais lattice,
leads to the known phase diagram. The intermediate quantum paramagnetic phase
is shown to be a (singlet) {\it plaquette crystal}, connected with the
neighboring N\'eel phase by a continuous phase transition. We also introduce
fluctuations around the hierarchical mean-field solutions, and demonstrate that
in the paramagnetic phase the ground and first excited states are separated by
a finite gap, which closes in the N\'eel and columnar phases. Our results
suggest that the quantum phase transition between N\'eel and paramagnetic
phases can be properly described within the Ginzburg-Landau-Wilson paradigm.Comment: LaTeX 2e, 14 pages, 17 figure
The supersymmetric modified Poschl-Teller and delta-well potentials
New supersymmetric partners of the modified Poschl-Teller and the Dirac's
delta well potentials are constructed in closed form. The resulting
one-parametric potentials are shown to be interrelated by a limiting process.
The range of values of the parameters for which these potentials are free of
singularities is exactly determined. The construction of higher order
supersymmetric partner potentials is also investigated.Comment: 20 pages, LaTeX file, 4 eps figure
Spectrum of Neutral Helium in Strong Magnetic Fields
We present extensive and accurate calculations for the excited state spectrum
of spin-polarized neutral helium in a range of magnetic field strengths up to
G. Of considerable interest to models of magnetic white dwarf stellar
atmospheres, we also present results for the dipole strengths of the low lying
transitions among these states. Our methods rely on a systematically saturated
basis set approach to solving the Hartree--Fock self-consistent field
equations, combined with an ``exact'' stochastic method to estimate the
residual basis set truncation error and electron correlation effects. We also
discuss the applicability of the adiabatic approximation to strongly magnetized
multi-electron atoms.Comment: 19 pages, 7 figures, 10 table
- …