77 research outputs found
MAGIC Upper Limits for two Milagro-detected, Bright Fermi Sources in the Region of SNR G65.1+0.6
We report on the observation of the region around supernova remnant G65.1+0.6
with the stand-alone MAGIC-I telescope. This region hosts the two bright GeV
gamma-ray sources 1FGL J1954.3+2836 and 1FGL J1958.6+2845. They are identified
as GeV pulsars and both have a possible counterpart detected at about 35 TeV by
the Milagro observatory. MAGIC collected 25.5 hours of good quality data, and
found no significant emission in the range around 1 TeV. We therefore report
differential flux upper limits, assuming the emission to be point-like (<0.1
deg) or within a radius of 0.3 deg. In the point-like scenario, the flux limits
around 1 TeV are at the level of 3 % and 2 % of the Crab Nebula flux, for the
two sources respectively. This implies that the Milagro emission is either
extended over a much larger area than our point spread function, or it must be
peaked at energies beyond 1 TeV, resulting in a photon index harder than 2.2 in
the TeV band.Comment: 8 pages, 3 figures, 1 tabl
Future axion searches with the International Axion Observatory (IAXO)
The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of ga\u3b3 3c few
7 10-12 GeV-1, i.e. 1-1.5 orders of magnitude beyond the one achieved by CAST, currently the most sensitive axion helioscope. The main elements of IAXO are an increased magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics
Effectiveness and safety of first-generation protease inhibitors in clinical practice: Hepatitis C virus patients with advanced fibrosis
AIM: To evaluates the effectiveness and safety of the first generation, NS3/4A protease inhibitors (PIs) in clinical practice against chronic C virus, especially in patients with advanced fibrosis.
METHODS: Prospective study and non-experimental analysis of a multicentre cohort of 38 Spanish hospitals that includes patients with chronic hepatitis C genotype 1, treatment-nai¨ve (TN) or treatment-experienced (TE),
who underwent triple therapy with the first generation NS3/4A protease inhibitors, boceprevir (BOC) and telaprevir (TVR), in combination with pegylated interferon and ribavirin. The patients were treatment in routine practice settings. Data on the study population and on adverse clinical and virologic effects were compiled during the treatment period and during follow up.
RESULTS: One thousand and fifty seven patients were included, 405 (38%) were treated with BOC and 652 (62%) with TVR. Of this total, 30% (n = 319) were TN and the remaining were TE: 28% (n = 298) relapsers, 12% (n = 123) partial responders (PR), 25% (n = 260) null-responders (NR) and for 5% (n = 57) with prior response unknown. The rate of sustained virologic response (SVR) by intention-to-treatment (ITT) was greater in those treated with TVR (65%) than in those treated with BOC (52%) (P < 0.0001), whereas by modified intention-to-treatment (mITT) no were found significant differences. By degree of fibrosis, 56% of patients were F4 and the highest SVR rates were recorded in the non-F4 patients, both TN and TE. In the analysis by groups, the TN patients treated with TVR by ITT showed a higher SVR (P = 0.005). However, by mITT there were no significant differences between BOC and TVR. In the multivariate analysis by mITT, the significant SVR factors were relapsers, IL28B CC and non-F4; the type of treatment (BOC or TVR) was not significant. The lowest SVR values were presented by the F4-NR patients, treated with BOC (46%) or with TVR (45%). 28% of the patients interrupted the treatment, mainly by non-viral response (51%): this outcome was more frequent in the TE than in the TN patients (57% vs 40%, P = 0.01). With respect to severe haematological disorders, neutropaenia was more likely to affect the patients treated with BOC (33% vs 20%, P = 0.0001), and thrombocytopaenia and anaemia, the F4 patients (P = 0.000, P = 0.025, respectively).
CONCLUSION: In a real clinical practice setting with a high proportion of patients with advanced fibrosis, effectiveness of first-generation PIs was high except for NR patients, with similar SVR rates being achieved by BOC and TVR
The IAXO Helioscope
The IAXO (International Axion Experiment) is a fourth generation helioscope with a sensitivity, in terms of detectable signal counts, at least 104 better than CAST phase-I, resulting in sensitivity on ga¿ one order of magnitude better. To achieve this performance IAXO will count on a 8-coil toroidal magnet with 60 cm diameter bores and equipped with X-ray focusing optics into 0.20 cm2 spots coupled to ultra-low background Micromegas X-ray detectors. The magnet will be on a platform that will allow solar tracking for 12 hours per day. The next short term objectives are to prepare a Technical Design Report and to construct the first prototypes of the hardware main ingredients: demonstration coil, X-ray optics and low background detector while refining the physics case and studying the feasibility studies for Dark Matter axions
The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO)
The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 \u2013 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling ga\u3b3 down to a few
710 1212 GeV 121 for a wide range of axion masses up to 3c 0.25 eV. This is an improvement over the currently best (3rd generation) axion helioscope, the CERN Axion Solar Telescope (CAST), of about 5 orders of magnitude in signal strength, corresponding to a factor 3c 20 in the axion photon coupling. IAXO's sensitivity relies on the construction of a large superconducting 8-coil toroidal magnet of 20 m length optimized for axion research. Each of the eight 60 cm diameter magnet bores is equipped with x-ray optics focusing the signal photons into 3c 0.2 cm2 spots that are imaged by very low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12 hours each day. This contribution is a summary of our papers [1], [2] and [3] and we refer to these for further details
Conceptual design of the International Axion Observatory (IAXO)
The International Axion Observatory (IAXO) will be a forth generation axion
helioscope. As its primary physics goal, IAXO will look for axions or
axion-like particles (ALPs) originating in the Sun via the Primakoff conversion
of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be
about 4-5 orders of magnitude more sensitive than CAST, currently the most
powerful axion helioscope, reaching sensitivity to axion-photon couplings down
to a few GeV and thus probing a large fraction of the
currently unexplored axion and ALP parameter space. IAXO will also be sensitive
to solar axions produced by mechanisms mediated by the axion-electron coupling
with sensitivity for the first time to values of not
previously excluded by astrophysics. With several other possible physics cases,
IAXO has the potential to serve as a multi-purpose facility for generic axion
and ALP research in the next decade. In this paper we present the conceptual
design of IAXO, which follows the layout of an enhanced axion helioscope, based
on a purpose-built 20m-long 8-coils toroidal superconducting magnet. All the
eight 60cm-diameter magnet bores are equipped with focusing x-ray optics, able
to focus the signal photons into cm spots that are imaged by
ultra-low-background Micromegas x-ray detectors. The magnet is built into a
structure with elevation and azimuth drives that will allow for solar tracking
for 12 h each day.Comment: 47 pages, submitted to JINS
A search for Very High Energy gamma-ray emission from Scorpius X-1 with the MAGIC telescopes
The acceleration of particles up to GeV or higher energies in microquasars
has been the subject of considerable theoretical and observational efforts in
the past few years. Sco X-1 is a microquasar from which evidence of highly
energetic particles in the jet has been found when it is in the so-called
Horizontal Branch (HB), a state when the radio and hard X-ray fluxes are higher
and a powerful relativistic jet is present. Here we present the first very high
energy gamma-ray observations of Sco X-1 obtained with the MAGIC telescopes. An
analysis of the whole dataset does not yield a significant signal, with 95% CL
flux upper limits above 300 GeV at the level of 2.4x10^{-12} ph/cm^2/s.
Simultaneous RXTE observations were conducted to search for TeV emission during
particular X-ray states of the source. A selection of the gamma-ray data
obtained during the HB based on the X-ray colors did not yield a signal either,
with an upper limit of 3.4x10^{-12} ph/cm^2/s. These upper limits place a
constraint on the maximum TeV luminosity to non-thermal X-ray luminosity of
L_{VHE}/L_{ntX}<0.02, that can be related to a maximum TeV luminosity to jet
power ratio of L_{VHE}/L_{j}<10^{-3}. Our upper limits indicate that the
underlying high-energy emission physics in Sco X-1 must be inherently different
from that of the hitherto detected gamma-ray binaries.Comment: 5 pages, 2 figures, 2 tables. Version as published in ApJ
MAGIC observations and multiwavelength properties of the quasar 3C279 in 2007 and 2009
3C 279, the first quasar discovered to emit VHE gamma-rays by the MAGIC telescope in 2006, was reobserved by MAGIC in January 2007 during a major optical flare and from December 2008 to April 2009 following an alert from the Fermi space telescope on an exceptionally high gamma -ray state. The January 2007 observations resulted in a detection on January 16 with significance 5.2 sigma, corresponding to a F(> 150 GeV) (3.8 \pm 0.8) \cdot 10^-11 ph cm^-2 s^-1 while the overall data sample does not show significant signal. The December 2008 - April 2009 observations did not detect the source. We study the multiwavelength behavior of the source at the epochs of MAGIC observations, collecting quasi-simultaneous data at optical and X-ray frequencies and for 2009 also gamma-ray data from Fermi. We study the light curves and spectral energy distribution of the source. The spectral energy distributions of three observing epochs (including the February 2006, which has been previously published in Albert et al. 2008a) are modeled with one-zone inverse Compton models and the emission on January 16, 2007 also with two zone model and with a lepto-hadronic model. We find that the VHE gamma-ray emission detected in 2006 and 2007 challenges standard one-zone model, based on relativistic electrons in a jet scattering broad line region photons, while the other studied models fit the observed spectral energy distribution more satisfactorily
PG 1553+113: five years of observations with MAGIC
We present the results of five years (2005-2009) of MAGIC observations of the
BL Lac object PG 1553+113 at very high energies (VHEs, E > 100 GeV). Power law
fits of the individual years are compatible with a steady mean photon index
\Gamma = 4.27 0.14. In the last three years of data, the flux level above
150 GeV shows a clear variability (probability of constant flux < 0.001%). The
flux variations are modest, lying in the range from 4% to 11% of the Crab
Nebula flux. Simultaneous optical data also show only modest variability that
seems to be correlated with VHE gamma ray variability. We also performed a
temporal analysis of (all available) simultaneous Fermi/LAT data of PG 1553+113
above 1 GeV, which reveals hints of variability in the 2008-2009 sample.
Finally, we present a combination of the mean spectrum measured at very high
energies with archival data available for other wavelengths. The mean spectral
energy distribution can be modeled with a one-zone Synchrotron Self Compton
(SSC) model, which gives the main physical parameters governing the VHE
emission in the blazar jet.Comment: 11 pages, 6 figures, accepted for publication in Ap
- …