149 research outputs found
Temperature responses of Rubisco from Paniceae grasses provide opportunities for improving C3 photosynthesis.
Enhancing the catalytic properties of the CO2-fixing enzyme Rubisco is a target for improving agricultural crop productivity. Here, we reveal extensive diversity in the kinetic response between 10 and 37 °C by Rubisco from C3 and C4 species within the grass tribe Paniceae. The CO2 fixation rate (kcatc) for Rubisco from the C4 grasses with nicotinamide adenine dinucleotide (NAD) phosphate malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase (PCK) photosynthetic pathways was twofold greater than the kcatc of Rubisco from NAD-ME species across all temperatures. The declining response of CO2/O2 specificity with increasing temperature was less pronounced for PCK and NADP-ME Rubisco, which would be advantageous in warmer climates relative to the NAD-ME grasses. Modelled variation in the temperature kinetics of Paniceae C3 Rubisco and PCK Rubisco differentially stimulated C3 photosynthesis relative to tobacco above and below 25 °C under current and elevated CO2. Amino acid substitutions in the large subunit that could account for the catalytic variation among Paniceae Rubisco are identified; however, incompatibilities with Paniceae Rubisco biogenesis in tobacco hindered their mutagenic testing by chloroplast transformation. Circumventing these bioengineering limitations is critical to tailoring the properties of crop Rubisco to suit future climates
Solar Radiation and Tidal Exposure as Environmental Drivers of Enhalus acoroides Dominated Seagrass Meadows
There is strong evidence of a global long-term decline in seagrass meadows that is widely attributed to anthropogenic activity. Yet in many regions, attributing these changes to actual activities is difficult, as there exists limited understanding of the natural processes that can influence these valuable ecosystem service providers. Being able to separate natural from anthropogenic causes of seagrass change is important for developing strategies that effectively mitigate and manage anthropogenic impacts on seagrass, and promote coastal ecosystems resilient to future environmental change. The present study investigated the influence of environmental and climate related factors on seagrass biomass in a large ≈250 ha meadow in tropical north east Australia. Annual monitoring of the intertidal Enhalus acoroides (L.f.) Royle seagrass meadow over eleven years revealed a declining trend in above-ground biomass (54% significant overall reduction from 2000 to 2010). Partial Least Squares Regression found this reduction to be significantly and negatively correlated with tidal exposure, and significantly and negatively correlated with the amount of solar radiation. This study documents how natural long-term tidal variability can influence long-term seagrass dynamics. Exposure to desiccation, high UV, and daytime temperature regimes are discussed as the likely mechanisms for the action of these factors in causing this decline. The results emphasise the importance of understanding and assessing natural environmentally-driven change when interpreting the results of seagrass monitoring programs
Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching
Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleachin
Tenascins interfere with remyelination in an ex vivo cerebellar explant model of demyelination
Oligodendrocytes form myelin membranes and thereby secure the insulation of axons and the rapid conduction of action potentials. Diseases such as multiple sclerosis highlight the importance of this glial cell population for brain function. In the adult brain, efficient remyelination following the damage to oligodendrocytes is compromised. Myelination is characterized by proliferation, migration, and proper integration of oligodendrocyte precursor cells (OPCs). These processes are among others controlled by proteins of the extracellular matrix (ECM). As a prominent representative ECM molecule, tenascin-C (Tnc) exerts an inhibitory effect on the migration and differentiation of OPCs. The structurally similar paralogue tenascin-R (Tnr) is known to promote the differentiation of oligodendrocytes. The model of lysolecithin-induced demyelination of cerebellar slice cultures represents an important tool for the analysis of the remyelination process. cerebellar explant cultures of and mouse lines displayed enhanced remyelination by forming thicker myelin membranes upon exposure to lysolecithin. The inhibitory effect of tenascins on remyelination could be confirmed when demyelinated wildtype control cultures were exposed to purified Tnc or Tnr protein. In that approach, the remyelination efficiency decreased in a dose-dependent manner with increasing concentrations of ECM molecules added. In order to examine potential roles in a complex environment, we successfully established cuprizone-based acute demyelination to analyze the remyelination behavior after cuprizone withdrawal in SV129, , and mice. In addition, we documented by immunohistochemistry in the cuprizone model the expression of chondroitin sulfate proteoglycans that are inhibitory for the differentiation of OPCs. In conclusion, inhibitory properties of Tnc and Tnr for myelin membrane formation could be demonstrated by using an approach
- …