30 research outputs found

    A survey-based analysis of the academic job market

    Get PDF
    Many postdoctoral researchers apply for faculty positions knowing relatively little about the hiring process or what is needed to secure a job offer. To address this lack of knowledge about the hiring process we conducted a survey of applicants for faculty positions: the survey ran between May 2018 and May 2019, and received 317 responses. We analyzed the responses to explore the interplay between various scholarly metrics and hiring outcomes. We concluded that, above a certain threshold, the benchmarks traditionally used to measure research success - including funding, number of publications or journals published in - were unable to completely differentiate applicants with and without job offers. Respondents also reported that the hiring process was unnecessarily stressful, time-consuming, and lacking in feedback, irrespective of outcome. Our findings suggest that there is considerable scope to improve the transparency of the hiring process

    Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage

    Get PDF
    Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts

    Cell-to-cell expression dispersion of B-cell surface proteins is linked to genetic variants in humans

    No full text
    International audienceVariability in gene expression across a population of homogeneous cells is known to influence various biological processes. In model organisms, natural genetic variants were found that modify expression dispersion (variability at a fixed mean) but very few studies have detected such effects in humans. Here, we analyzed single-cell expression of four proteins (CD23, CD55, CD63 and CD86) across cell lines derived from individuals of the Yoruba population. Using data from over 30 million cells, we found substantial inter-individual variation of dispersion. We demonstrate, via de novo cell line generation and subcloning experiments, that this variation exceeds the variation associated with cellular immortalization. We detected a genetic association between the expression dispersion of CD63 and the rs971 SNP. Our results show that human DNA variants can have inherently-probabilistic effects on gene expression. Such subtle genetic effects may participate to phenotypic variation and disease outcome

    Allele-specific RNA imaging shows that allelic imbalances can arise in tissues through transcriptional bursting.

    No full text
    Extensive cell-to-cell variation exists even among putatively identical cells, and there is great interest in understanding how the properties of transcription relate to this heterogeneity. Differential expression from the two gene copies in diploid cells could potentially contribute, yet our ability to measure from which gene copy individual RNAs originated remains limited, particularly in the context of tissues. Here, we demonstrate quantitative, single molecule allele-specific RNA FISH adapted for use on tissue sections, allowing us to determine the chromosome of origin of individual RNA molecules in formaldehyde-fixed tissues. We used this method to visualize the allele-specific expression of Xist and multiple autosomal genes in mouse kidney. By combining these data with mathematical modeling, we evaluated models for allele-specific heterogeneity, in particular demonstrating that apparent expression from only one of the alleles in single cells can arise as a consequence of low-level mRNA abundance and transcriptional bursting

    miR-1 coordinately regulates lysosomal v-ATPase and biogenesis to impact proteotoxicity and muscle function during aging

    No full text
    Muscle function relies on the precise architecture of dynamic contractile elements, which must be fine-tuned to maintain motility throughout life. Muscle is also plastic, and remodeled in response to stress, growth, neural and metabolic inputs. The conserved muscle-enriched microRNA, miR-1, regulates distinct aspects of muscle development, but whether it plays a role during aging is unknown. Here we investigated Caenorhabditis elegans miR-1 in muscle function in response to proteostatic stress. mir-1 deletion improved mid-life muscle motility, pharyngeal pumping, and organismal longevity upon polyQ35 proteotoxic challenge. We identified multiple vacuolar ATPase subunits as subject to miR-1 control, and the regulatory subunit vha-13/ATP6V1A as a direct target downregulated via its 30 UTR to mediate miR-1 physiology. miR-1 further regulates nuclear localization of lysosomal biogenesis factor HLH-30/TFEB and lysosomal acidification. Our studies reveal that miR-1 coordinately regulates lysosomal v-ATPase and biogenesis to impact muscle function and health during aging

    Data Figures 1 & 2

    No full text
    Data has been retrieved from the public database of the UNESCO Institute for Statistics: http://uis.unesco.org/en/news/rd-data-releas

    Towards inclusive funding practices for early career researchers

    No full text
    Funding bodies have different practices in place to assess fellowship and grant proposals. Some of these are not beneficial for early career researchers (ECRs), and some are. In this initiative, we investigated which aspects of funding assessment can and should be improved, and emphasise how these good practices will lead to fair funding in general, and more specific for ECRs. Our aim is to create awareness amongst ECRs of good practices regarding fair funding, and to have a discussion with funding organizations, stakeholders and the scientific community as a whole to promote fair funding practices and drive policy changes

    Data from: Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage

    No full text
    Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts
    corecore