179 research outputs found
Development and Test of a Large-aperture Nb3Sn Cos-theta Dipole Coil with Stress Management
The design concept of the Electron Ion Collider (EIC), which is under
construction at BNL, considers adding a 2nd Interaction Region (IR) and
detector to the machine after completion of the present EIC project. Recent
progress with development and fabrication of large-aperture high-field magnets
based on the Nb3Sn technology for the HL-LHC makes this technology interesting
for the 2nd EIC IR. This paper summarizes the results of feasibility studies of
large-aperture high-field Nb3Sn dipoles and quadrupoles for the 2nd EIC IR.Comment: IPAC 2023. arXiv admin note: text overlap with arXiv:2304.1315
Recommended from our members
Test Results for HINS Focusing Solenoids at Fermilab
A focusing lens R&D program is close to completion and industrial production of magnets has begun. Two types of magnets are being built for use in the room temperature RF section at the front end of a superconducting H-minus linac of a High Intensity Neutrino Source. All of the magnets are designed as a solenoid with bucking coils to cancel the field in the vicinity of adjacent RF cavities, and one type incorporates steering dipole corrector coils. We present a summary of the predicted and measured quench and magnetic properties for both R&D and production device samples that have been tested at Fermilab
Electrical and quench performance of the first MICE coupling coil
The first MICE Coupling Coil has been tested in a conduction-cooled environment in the new Solenoid Test Facility at Fermilab. We present an overview of the power and quench protection scheme, and report on the electrical and quench performance results obtained during cold power tests of the magnet
Quench Performance of the First Pre-series AUP Cryo-assembly
The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN
will include eight cryo-assemblies that are expected to be fabricated and
delivered to CERN by the US HL-LHC Accelerator Upgrade Project (AUP) as part of
the U.S. contributions to the HL-LHC. These cryostat assemblies are the
quadrupole magnetic components of the HL-LHC Q1 and Q3 inner triplet optical
elements in front of the two interaction points. Each cryo-assembly consists of
two 4.2 m long Nb3Sn quadrupole magnets with aperture 150 mm and operating
gradient 132.6 T/m. The first pre-series cryo-assembly has been fabricated and
successfully tested at the horizontal test facility at Fermi National
Accelerator Laboratory. In this manuscript we report the quench test results of
the LQXFA/B-01 cryo-assembly. The primary objective of the horizontal test is
full cryo-assembly qualification and validation of the performance
requirements.Comment: MT28 International Conference on Magnet Technology, Accepted Versio
Status of the High Field Cable Test Facility at Fermilab
Fermi National Accelerator Laboratory (FNAL) and Lawrence Berkeley National
Laboratory (LBNL) are building a new High Field Vertical Magnet Test Facility
(HFVMTF) for testing superconducting cables in high magnetic field. The
background magnetic field of 15 T in the HFVMTF will be produced by a magnet
provided by LBNL. The HFVMTF is jointly funded by the US DOE Offices of
Science, High Energy Physics (HEP), and Fusion Energy Sciences (FES), and will
serve as a superconducting cable test facility in high magnetic fields and a
wide range of temperatures for HEP and FES communities. This facility will also
be used to test high-field superconducting magnet models and demonstrators,
including hybrid magnets, produced by the US Magnet Development Program (MDP).
The paper describes the status of the facility, including construction,
cryostat designs, top and lambda plates, and systems for powering, and quench
protection and monitoring
Recommended from our members
Strength and shape of the magnetic field of the Fermilab main injector dipoles
Measurements of 230 6-meter and 136 4-meter dipoles constructed for the Fermilab Main Injector were carried out as part of the magnet production effort. An automated measurement system provided data on magnetic field strength and shape using several partially redundant systems. Results of these measurements are available for each individual magnet for use in accelerator modelling. In this report we will summarise the results on all of the magnets to characterise the properties which will govern accelerator operation
- …