7 research outputs found

    Dwell and interface defeat on borosilicate glass

    No full text
    We have conducted impact experiments using gold long rods into borosilicate glass and the measured the penetration velocity as a function of impact velocity. At sufficiently low-impact velocities, the glass target resists penetration and there is dwell; dwell is observed to approximately 450 m/s for bare glass. If a copper buffer is placed over the glass to eliminate the impact shock, significant dwell can be seen at impact velocities as high as 890 m/s. These impact velocities correspond to Bernoulli stresses of approximately 2.0 and 7.6GPa, respectively. The paper describes the experimental data, and summarizes the results and our findings

    Failure and penetration response of borosilicate glass during multiple short-rod impact

    No full text
    In Anderson Jr CE, Orphal DL, Behner T, Templeton, DW [Failure and penetration response of borosilicate glass during short-rod impact. Int J Impact Eng 2009, doi:10.1016/j.ijimpeng.2008.12.002.1 it was demonstrated that the failure front (FF) produced by the penetration of a borosilicate glass target by a gold rod ceased to propagate a short time after the rod was fully eroded. This strongly suggests that progression of the FF is not described by a wave equation. Here it is shown that propagation of the FF is reinitiated if a second co-axial rod, spaced a distance from the first, impacts the glass at the bottom of the penetration channel. The experiments were performed in reverse ballistic mode with two short rods spaced apart. In some experiments both rods were gold; in other experiments, one rod was copper and the other gold. FF propagation was measured using high-speed photography; rod penetration was measured using multiple, independent flash X-rays. Much of the observed phenomenology can be modeled assuming that the rod, either first or second, "communicates" with the FF at a speed corresponding to the bulk sound speed of the undamaged glass

    Penetration and failure of lead and borosilicate glass against rod impact

    No full text
    This paper presents the experimental design and results for gold rod impact on DEDF (5.19g/cm(sup 3)) and Borofloat (2.2g/cm(sup 3)) glass by visualizing simultaneously failure propagation in the glass with a high-speed camera and rod penetration with flash radiography. At a given impact velocity, the velocity of the failure front is significantly higher during early penetration than during steady-state penetration of the rod. For equal pressures but different stress states, the failure front velocities determined from Taylor tests or planar-impact tests are greater than those observed during steady-state rod penetration. The ratio of average failure front velocity to rod penetration velocity decreases with increasing impact velocity (vp) in the range of v(sub p) = 0.4-2.8 km/s. As a consequence, the distance between the rod tip and the failure front is reduced with increasing vp. The Tate term RT increases with impact velocit
    corecore