80 research outputs found
Formation of the Nonlinear Dynamic Hologram in Clear Organic Fluids
The recording of dynamic holograms during multiwave interactions in clear organic fluids (ethanol,
acetone, dioxan, etc.) is investigated. It is shown that the fifth-order nonlinearities and higher become activated
along with the cubical nonlinearity under the intense laser excitation (~100 MW cm
â2
) in the near-IR spectral
range, which allows visualization of the IR images using different orders of diffraction
Multiwave Mixing in Complex Molecular Media and Dynamic Modes of Light-Wave Transformation
The mechanism of multiwave mixing realized in solutions of complex organic compounds (dyes), in
conditions when higher-order nonlinearities are exhibited along with the cubic one, has been analyzed
theoretically and tested experimentally. Nonlinear recording of dynamic holograms enables signifcant
improvement of the potentialities of holographic methods used for image conversion due to switching
from phase conjugation to smoothing and amplification of the wavefront spatial structure. It has been
demonstrated that a nonstationary energy exchange between the interacting waves is the cause for
transition from the optical bistability mode to the mode of intensity self-oscillations
Nonlinear formation of dynamic holograms and multiwave mixing in resonant media
The schemes of light beam transformations by volume dynamic holograms in resonant media revealing the fifth- or
higher-order nonlinearities have been theoretically analyzed. N-wave mixing has been realized by changing of the
propagation direction or frequency of the read-out wave in the solution of Rhodamine 6G and polymethine 3274U dyes. It
has been demonstrated that the experimental results are in good agreement with the theoretical data obtained for a three-level
medium model with due regard to absorption from the excited singlet level
Water Cherenkov Detectors response to a Gamma Ray Burst in the Large Aperture GRB Observatory
In order to characterise the behaviour of Water Cherenkov Detectors (WCD)
under a sudden increase of 1 GeV - 1 TeV background photons from a Gamma Ray
Burst (GRB), simulations were conducted and compared to data acquired by the
WCD of the Large Aperture GRB Observatory (LAGO). The LAGO operates arrays of
WCD at high altitude to detect GRBs using the single particle technique. The
LAGO sensitivity to GRBs is derived from the reported simulations of the gamma
initiated particle showers in the atmosphere and the WCD response to
secondaries.Comment: 5 pages, proceeding of the 31st ICRC 200
The Large Aperture GRB Observatory
The Large Aperture GRB Observatory (LAGO) is aiming at the detection of the
high energy (around 100 GeV) component of Gamma Ray Bursts, using the single
particle technique in arrays of Water Cherenkov Detectors (WCD) in high
mountain sites (Chacaltaya, Bolivia, 5300 m a.s.l., Pico Espejo, Venezuela,
4750 m a.s.l., Sierra Negra, Mexico, 4650 m a.s.l). WCD at high altitude offer
a unique possibility of detecting low gamma fluxes in the 10 GeV - 1 TeV range.
The status of the Observatory and data collected from 2007 to date will be
presented.Comment: 4 pages, proceeding of 31st ICRC 200
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector
Measurements of electrons from interactions are crucial for the Deep
Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as
searches for physics beyond the standard model, supernova neutrino detection,
and solar neutrino measurements. This article describes the selection and
reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector.
ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and
operated at CERN as a charged particle test beam experiment. A sample of
low-energy electrons produced by the decay of cosmic muons is selected with a
purity of 95%. This sample is used to calibrate the low-energy electron energy
scale with two techniques. An electron energy calibration based on a cosmic ray
muon sample uses calibration constants derived from measured and simulated
cosmic ray muon events. Another calibration technique makes use of the
theoretically well-understood Michel electron energy spectrum to convert
reconstructed charge to electron energy. In addition, the effects of detector
response to low-energy electron energy scale and its resolution including
readout electronics threshold effects are quantified. Finally, the relation
between the theoretical and reconstructed low-energy electron energy spectrum
is derived and the energy resolution is characterized. The low-energy electron
selection presented here accounts for about 75% of the total electron deposited
energy. After the addition of lost energy using a Monte Carlo simulation, the
energy resolution improves from about 40% to 25% at 50~MeV. These results are
used to validate the expected capabilities of the DUNE far detector to
reconstruct low-energy electrons.Comment: 19 pages, 10 figure
Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment
A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is
to measure the MeV neutrinos produced by a Galactic
core-collapse supernova if one should occur during the lifetime of the
experiment. The liquid-argon-based detectors planned for DUNE are expected to
be uniquely sensitive to the component of the supernova flux, enabling
a wide variety of physics and astrophysics measurements. A key requirement for
a correct interpretation of these measurements is a good understanding of the
energy-dependent total cross section for charged-current
absorption on argon. In the context of a simulated extraction of
supernova spectral parameters from a toy analysis, we investigate the
impact of modeling uncertainties on DUNE's supernova neutrino
physics sensitivity for the first time. We find that the currently large
theoretical uncertainties on must be substantially reduced
before the flux parameters can be extracted reliably: in the absence of
external constraints, a measurement of the integrated neutrino luminosity with
less than 10\% bias with DUNE requires to be known to about 5%.
The neutrino spectral shape parameters can be known to better than 10% for a
20% uncertainty on the cross-section scale, although they will be sensitive to
uncertainties on the shape of . A direct measurement of
low-energy -argon scattering would be invaluable for improving the
theoretical precision to the needed level.Comment: 25 pages, 21 figure
Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector
Measurements of electrons from Îœe interactions are crucial for the Deep Underground Neutrino
Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard
model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection
and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one
of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam
experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a
purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques.
An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from
measured and simulated cosmic ray muon events. Another calibration technique makes use of the
theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron
energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution
including readout electronics threshold effects are quantified. Finally, the relation between the theoretical
and reconstructed low-energy electron energy spectra is derived, and the energy resolution is characterized.
The low-energy electron selection presented here accounts for about 75% of the total electron deposited
energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves
from about 40% to 25% at 50 MeV. These results are used to validate the expected capabilities of the DUNE
far detector to reconstruct low-energy electrons
- âŠ