1,321 research outputs found
Resonance energy of the barKNN-piYN system
The resonance energies of strange dibaryons are investigated with the use of
the \bar{K}NN-\pi Y N coupled-channels Faddeev equation. It is found that the
pole positions of the predicted three-body amplitudes are significantly
modified when the three-body coupled-channels dynamics is approximated, as is
done in the literature, by the effective two-body \bar{K}N interactions.Comment: 14 pages, 5 figure
Negative high-frequency differential conductivity in semiconductor superlattices
We examine the high-frequency differential conductivity response properties
of semiconductor superlattices having various miniband dispersion laws. Our
analysis shows that the anharmonicity of Bloch oscillations (beyond
tight-binding approximation) leads to the occurrence of negative high-frequency
differential conductivity at frequency multiples of the Bloch frequency. This
effect can arise even in regions of positive static differential conductivity.
The influence of strong electron scattering by optic phonons is analyzed. We
propose an optimal superlattice miniband dispersion law to achieve
high-frequency field amplification
Dispersionful analogues of Benney's equations and -wave systems
We recall Krichever's construction of additional flows to Benney's hierarchy,
attached to poles at finite distance of the Lax operator. Then we construct a
``dispersionful'' analogue of this hierarchy, in which the role of poles at
finite distance is played by Miura fields. We connect this hierarchy with
-wave systems, and prove several facts about the latter (Lax representation,
Chern-Simons-type Lagrangian, connection with Liouville equation,
-functions).Comment: 12 pages, latex, no figure
Triangle-generation in topological D-brane categories
Tachyon condensation in topological Landau-Ginzburg models can generally be
studied using methods of commutative algebra and properties of triangulated
categories. The efficiency of this approach is demonstrated by explicitly
proving that every D-brane system in all minimal models of type ADE can be
generated from only one or two fundamental branes.Comment: 34 page
Magneto-Conductance Anisotropy and Interference Effects in Variable Range Hopping
We investigate the magneto-conductance (MC) anisotropy in the variable range
hopping regime, caused by quantum interference effects in three dimensions.
When no spin-orbit scattering is included, there is an increase in the
localization length (as in two dimensions), producing a large positive MC. By
contrast, with spin-orbit scattering present, there is no change in the
localization length, and only a small increase in the overall tunneling
amplitude. The numerical data for small magnetic fields , and hopping
lengths , can be collapsed by using scaling variables , and
in the perpendicular and parallel field orientations
respectively. This is in agreement with the flux through a `cigar'--shaped
region with a diffusive transverse dimension proportional to . If a
single hop dominates the conductivity of the sample, this leads to a
characteristic orientational `finger print' for the MC anisotropy. However, we
estimate that many hops contribute to conductivity of typical samples, and thus
averaging over critical hop orientations renders the bulk sample isotropic, as
seen experimentally. Anisotropy appears for thin films, when the length of the
hop is comparable to the thickness. The hops are then restricted to align with
the sample plane, leading to different MC behaviors parallel and perpendicular
to it, even after averaging over many hops. We predict the variations of such
anisotropy with both the hop size and the magnetic field strength. An
orientational bias produced by strong electric fields will also lead to MC
anisotropy.Comment: 24 pages, RevTex, 9 postscript figures uuencoded Submitted to PR
hbar-Dependent KP hierarchy
This is a summary of a recursive construction of solutions of the
hbar-dependent KP hierarchy. We give recursion relations for the coefficients
X_n of an hbar-expansion of the operator X = X_0 + \hbar X_1 + \hbar^2 X_2 +
... for which the dressing operator W is expressed in the exponential form W =
\exp(X/\hbar). The asymptotic behaviours of (the logarithm of) the wave
function and the tau function are also considered.Comment: 12 pages, contribution to the Proceedings of the "International
Workshop on Classical and Quantum Integrable Systems 2011" (January 24-27,
2011 Protvino, Russia
Rigidity and defect actions in Landau-Ginzburg models
Studying two-dimensional field theories in the presence of defect lines
naturally gives rise to monoidal categories: their objects are the different
(topological) defect conditions, their morphisms are junction fields, and their
tensor product describes the fusion of defects. These categories should be
equipped with a duality operation corresponding to reversing the orientation of
the defect line, providing a rigid and pivotal structure. We make this
structure explicit in topological Landau-Ginzburg models with potential x^d,
where defects are described by matrix factorisations of x^d-y^d. The duality
allows to compute an action of defects on bulk fields, which we compare to the
corresponding N=2 conformal field theories. We find that the two actions differ
by phases.Comment: 53 pages; v2: clarified exposition of pivotal structures, corrected
proof of theorem 2.13, added remark 3.9; version to appear in CM
Physical parameters and dynamical properties of the multiple system ι UMa (ADS 7114)
We analyze the physical parameters, orbital elements, and dynamic stability of the multiple system ι UMa (HD 76644 = ADS 7114). We have used the positions from the WDS catalog and our own observations on the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and the 1.5-m Russian-Turkish Telescope (Antalya, Turkey). We have obtained more precise orbital parameters of the subsystems, and spectral types, absolute magnitudes, and masses of the components. The primary has Sp = F0 V-IV, M = 1.7 ± 0.1M ⊙, T eff = 7260 ± 70 K, and log g = 4.30 ± 0.07. The companion in the close Aa subsystem is most likely a white dwarf with a mass of approximately 1.0 ± 0. 3M ⊙. The spectral types and masses of the components in the BC subsystem are M3V, M4V and 0.35 ± 0.05M ⊙, 0.30 ± 0.05M ⊙, respectively. The total mass is 3.4 ± 0.4M ⊙. The Aa subsystem probably has an orbital period of 4470 d = 12.2 y and an eccentricity of approximately 0.6. The outer subsystem seems to have a period of approximately 2084 yrs and an eccentricity of approximately 0.9. We have carried out simulations using the stability criteria and shown that for all possible variations in the component parameters, the multiple system is unstable on a time scale of less than 10 6 years with a probability exceeding 0.98. Possible reasons for this instability are discussed. © 2012 Pleiades Publishing, Ltd
Additional symmetries of constrained CKP and BKP hierarchies
The additional symmetries of the constrained CKP (cCKP) and BKP (cBKP)
hierarchies are given by their actions on the Lax operators, and their actions
on the eigenfunction and adjoint eigenfunction are
presented explicitly. Furthermore, we show that acting on the space of the wave
operator, forms new centerless and
-subalgebra of centerless respectively. In
order to define above symmetry flows of the cCKP and cBKP
hierarchies, two vital operators are introduced to revise the additional
symmetry flows of the CKP and BKP hierarchies.Comment: 14 pages, accepted by SCIENCE CHINA Mathematics(2010
- …