4 research outputs found

    SPIKE – a database, visualization and analysis tool of cellular signaling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological signaling pathways that govern cellular physiology form an intricate web of tightly regulated interlocking processes. Data on these regulatory networks are accumulating at an unprecedented pace. The assimilation, visualization and interpretation of these data have become a major challenge in biological research, and once met, will greatly boost our ability to understand cell functioning on a systems level.</p> <p>Results</p> <p>To cope with this challenge, we are developing the SPIKE knowledge-base of signaling pathways. SPIKE contains three main software components: 1) A database (DB) of biological signaling pathways. Carefully curated information from the literature and data from large public sources constitute distinct tiers of the DB. 2) A visualization package that allows interactive graphic representations of regulatory interactions stored in the DB and superposition of functional genomic and proteomic data on the maps. 3) An algorithmic inference engine that analyzes the networks for novel functional interplays between network components.</p> <p>SPIKE is designed and implemented as a community tool and therefore provides a user-friendly interface that allows registered users to upload data to SPIKE DB. Our vision is that the DB will be populated by a distributed and highly collaborative effort undertaken by multiple groups in the research community, where each group contributes data in its field of expertise.</p> <p>Conclusion</p> <p>The integrated capabilities of SPIKE make it a powerful platform for the analysis of signaling networks and the integration of knowledge on such networks with <it>omics </it>data. </p

    A survey of visualization tools for biological network analysis

    Get PDF
    The analysis and interpretation of relationships between biological molecules, networks and concepts is becoming a major bottleneck in systems biology. Very often the pure amount of data and their heterogeneity provides a challenge for the visualization of the data. There are a wide variety of graph representations available, which most often map the data on 2D graphs to visualize biological interactions. These methods are applicable to a wide range of problems, nevertheless many of them reach a limit in terms of user friendliness when thousands of nodes and connections have to be analyzed and visualized. In this study we are reviewing visualization tools that are currently available for visualization of biological networks mainly invented in the latest past years. We comment on the functionality, the limitations and the specific strengths of these tools, and how these tools could be further developed in the direction of data integration and information sharing

    The Added Value of a High CT Coronary Artery Calcium Score in the Management of Patients Presenting with Acute Chest Pain vs. Stable Chest Pain

    No full text
    Background: Contrast computerized tomography (CT) scan is occasionally aborted due to a high coronary artery calcium score (CACS). For the same CACS in our clinical practice, we observed a higher occurrence of severe coronary artery disease (CAD) in patients with acute chest pain (ACP) compared to patients with stable chest pain (SCP). Since it is known that ACP differs in many ways from SCP, the aim of this study was to compare the predictive value of a high CACS for the diagnosis of severe CAD between ACP and SCP patients. Methods: This single center observational retrospective study included consecutive patients who underwent cardiac CT for chest pain and were found to have a CACS of &gt;200 Agatston units. Patients were divided into two groups, ACP and SCP. Severe CAD was defined as &ge;70% stenosis on coronary CT angiography or invasive coronary angiography. Baseline characteristics and final diagnosis of severe CAD were compared. Results: The cohort included 220 patients, 106 with ACP and 114 with SCP. ACP patients had higher severe CAD rates (60.4% vs. 36.8%; p &lt; 0.001). On multivariate analysis including cardiac risk factors, CACS &gt; 400 au (OR = 2.34 95% CI [1.32&ndash;4.15]; p = 0.004) and ACP (OR = 2.54 95% CI [1.45&ndash;4.45]; p = 0.001) were independent predictors of severe CAD. The addition of the clinical setting of ACP added significant incremental predictive value for severe stenosis. Conclusion: A high CACS is more associated with severe CAD in patients presenting with ACP than SCP. The findings suggest that the CACS could impact the management of patients during the scan
    corecore