7,970 research outputs found
Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot
High resolution spectroscopy, providing constraints on plasma motions and
temperatures, is a powerful means to investigate the structure of accretion
streams in CTTS. In particular, the accretion shock region, where the accreting
material is heated to temperatures of a few MK as it continues its inward bulk
motion, can be probed by X-ray spectroscopy. To attempt to detect for the first
time the motion of this X-ray-emitting post-shock material, we searched for a
Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This
test should unveil the nature of this X-ray emitting plasma component in CTTS,
and constrain the accretion stream geometry. We searched for a Doppler shift in
the X-ray emission from TW Hya with two different methods, by measuring the
position of a selected sample of emission lines, and by fitting the whole TW
Hya X-ray spectrum, allowing the line-of-sight velocity to vary. We found that
the plasma at T~2-4 MK has a line-of-sight velocity of 38.3+/-5.1 km/s with
respect to the stellar photosphere. This result definitively confirms that this
X-ray-emitting material originates in the post-shock region, at the base of the
accretion stream, and not in coronal structures. The comparison of the observed
velocity along the line of sight, 38.3+/-5.1 km/s, with the inferred intrinsic
velocity of the post shock of TW Hya, v_post~110-120 km/s, indicates that the
footpoints of the accretion streams on TW Hya are located at low latitudes on
the stellar surface. Our results indicate that complex magnetic field
geometries, such as that of TW Hya, permit low-latitude accretion spots.
Moreover, since on TW Hya the redshift of the soft X-ray emission is very
similar to that of the narrow component of the CIV resonance doublet at 1550
Ang, as found by Ardila et al. (2013), then the plasma at 2-4 MK and that at
0.1 MK likely originate in the same post-shock regions.Comment: Accepted for publication in Astronomy & Astrophysics; 2nd version
after language editor corrections; 16 pages, 8 figures, 6 table
Topological Phase Transitions and Holonomies in the Dimer Model
We demonstrate that the classical dimer model defined on a toroidal hexagonal
lattice acquires holonomy phases in the thermodynamic limit. When all
activities are equal the lattice sizes must be considered mod 6 in which case
the finite size corrections to the bulk partition function correspond to a
massless Dirac Fermion in the presence of a flat connection with nontrivial
holonomy. For general bond activities we find that the phase transition in this
model is a topological one, where the torus degenerates and its modular
parameter becomes real at the critical temperature. We argue that these
features are generic to bipartite dimer models and we present a more general
lattice whose continuum partition function is that of a massive Dirac Fermion.Comment: 7 pages, 4 figures. Minor corrections with additional figure
Universal Semantic Annotator
Explicit semantic knowledge has often been considered a necessary ingredient to enable the development of intelligent systems. However, current stateof- the-art tools for the automatic extraction of such knowledge often require expert understanding of the complex techniques used in lexical and sentence-level semantics and their linguistic theories. To overcome this limitation and lower the barrier to entry, we present the Universal Semantic Annotator (USeA) ELG pilot project, which offers a transparent way to automatically provide high-quality semantic annotations in 100 languages through state-of-the-art models, making it easy to exploit semantic knowledge in real-world applications
First-principles study of crystalline bundles of single-walled boron nanotubes with small diameter
First-principles calculations based on density functional theory are performed to study structural and electronic properties of crystalline bundles of (n,0) zigzag and (0,n) armchair-type single-walled boron nanotubes (SWBNT) with small diameter, about 4-6. The results predict a modification in the properties of SWBNT bundles relative to those of isolated nanotubes with small diameter. The predicted modification can be attributed to a significant interplay between intra-and inter-tubular bonds in determining the stability of bundles of small diameter SWBNT, analogous to the role played by intra-and inter-icosahedral bonds in the boron crystalline solids. © IOP Publishing Ltd
GAM Forest Explanation
Most accurate machine learning models unfortunately produce black-box predictions, for which it is impossible to grasp the internal logic that leads to a specific decision. Unfolding the logic of such black-box models is of increasing importance, especially when they are used in sensitive decision-making processes. In this work we focus on forests of decision trees, which may include hundreds to thousands of decision trees to produce accurate predictions. Such complexity raises the need of developing explanations for the predictions generated by large forests. We propose a post hoc explanation method of large forests, named GAM-based Explanation of Forests (GEF), which builds a Generalized Additive Model (GAM) able to explain, both locally and globally, the impact on the predictions of a limited set of features and feature interactions. We evaluate GEF over both synthetic and real-world datasets and show that GEF can create a GAM model with high fidelity by analyzing the given forest only and without using any further information, not even the initial training dataset
Josephson squelch filter for quantum nanocircuits
We fabricated and tested a squelch circuit consisting of a copper powder
filter with an embedded Josephson junction connected to ground. For small
signals (squelch-ON), the small junction inductance attenuates strongly from DC
to at least 1 GHz, while for higher frequencies dissipation in the copper
powder increases the attenuation exponentially with frequency. For large
signals (squelch-OFF) the circuit behaves as a regular metal powder filter. The
measured ON/OFF ratio is larger than 50dB up to 50 MHz. This squelch can be
applied in low temperature measurement and control circuitry for quantum
nanostructures such as superconducting qubits and quantum dots.Comment: Corrected and completed references 6,7,8. Updated some minor details
in figure
Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars
(abridged) AIMS. We investigate the dynamics and stability of post-shock
plasma streaming along nonuniform stellar magnetic fields at the impact region
of accretion columns. We study how the magnetic field configuration and
strength determine the structure, geometry, and location of the shock-heated
plasma. METHODS. We model the impact of an accretion stream onto the
chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our
model takes into account the gravity, the radiative cooling, and the
magnetic-field-oriented thermal conduction. RESULTS. The structure, stability,
and location of the shocked plasma strongly depend on the configuration and
strength of the magnetic field. For weak magnetic fields, a large component of
B may develop perpendicular to the stream at the base of the accretion column,
limiting the sinking of the shocked plasma into the chromosphere. An envelope
of dense and cold chromospheric material may also develop around the shocked
column. For strong magnetic fields, the field configuration determines the
position of the shock and its stand-off height. If the field is strongly
tapered close to the chromosphere, an oblique shock may form well above the
stellar surface. In general, a nonuniform magnetic field makes the distribution
of emission measure vs. temperature of the shocked plasma lower than in the
case of uniform magnetic field. CONCLUSIONS. The initial strength and
configuration of the magnetic field in the impact region of the stream are
expected to influence the chromospheric absorption and, therefore, the
observability of the shock-heated plasma in the X-ray band. The field strength
and configuration influence also the energy balance of the shocked plasma, its
emission measure at T > 1 MK being lower than expected for a uniform field. The
above effects contribute in underestimating the mass accretion rates derived in
the X-ray band.Comment: 11 pages, 11 Figures; accepted for publication on A&A. Version with
full resolution images can be found at
http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_accretion_shocks.pd
Graphs with at most one crossing
The crossing number of a graph is the least number of crossings over all
possible drawings of . We present a structural characterization of graphs
with crossing number one
Silicon Superconducting Quantum Interference Device
We have studied a Superconducting Quantum Interference SQUID device made from
a single layer thin film of superconducting silicon. The superconducting layer
is obtained by heavily doping a silicon wafer with boron atoms using the Gas
Immersion Laser Doping (GILD) technique. The SQUID device is composed of two
nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at
low temperature and low magnetic field. The overall behavior shows very good
agreement with numerical simulations based on the Ginzburg-Landau equations.Comment: Published in Applied Physics Letters (August 2015
A Symbian-based mobile solution for intra-body temperature monitoring
Copyright © [2010] IEEE. Reprinted from 12th IEEE International Conference on e-Health Networking, Applications and Services . ISBN: 978-1-4244-6374-9. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”Biofeedback data acquisition is an extremely
important task in body sensor networks (BSNs). Data collected
by sensors need to be processed in order to be shown in an easy
and meaningful way for the user. The use of mobile devices may
support and offer new user experiences. When connected to a
BSN they can aggregate and process data collected by each
sensor, providing a mobile solution for a healthcare system. This
mobility offers a better patients' quality of life allowing a regular
daily routine and always under monitoring. This paper proposes
a Symbian-based mobile solution for intra-body temperature
monitoring. Mobile device connects wirelessly to an intra-vaginal
temperature sensor and interacts with sensor for temperature
data collection and monitoring. This system helps women to
detect their fertile and ovulation periods by the increasing of
their intra-vaginal temperature. The mobile system was tested
and validated with success and it is available for regular use
- …