398 research outputs found

    From the SU(2)SU(2) Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings

    Full text link
    We consider the (2+1)(2+1)-d SU(2)SU(2) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagom\'e lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the Z(2)\mathbb{Z}(2) center of the SU(2)SU(2) gauge group) are confined to each other by fractionalized strings with a delocalized Z(2)\mathbb{Z}(2) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one short paragraph are adde

    From the SU(2)SU(2) Quantum Link Model on the Honeycomb Lattice to the Quantum Dimer Model on the Kagom\'e Lattice: Phase Transition and Fractionalized Flux Strings

    Full text link
    We consider the (2+1)(2+1)-d SU(2)SU(2) quantum link model on the honeycomb lattice and show that it is equivalent to a quantum dimer model on the Kagom\'e lattice. The model has crystalline confined phases with spontaneously broken translation invariance associated with pinwheel order, which is investigated with either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges (which transform non-trivially under the Z(2)\mathbb{Z}(2) center of the SU(2)SU(2) gauge group) are confined to each other by fractionalized strings with a delocalized Z(2)\mathbb{Z}(2) flux. The strands of the fractionalized flux strings are domain walls that separate distinct pinwheel phases. A second-order phase transition in the 3-d Ising universality class separates two confining phases; one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.Comment: 16 pages, 20 figures, 2 tables, two more relevant references and one short paragraph are adde

    Dominant Reaction Pathways in High Dimensional Systems

    Full text link
    This paper is devoted to the development of a theoretical and computational framework to efficiently sample the statistically significant thermally activated reaction pathways, in multi-dimensional systems obeying Langevin dynamics. We show how to obtain the set of most probable reaction pathways and compute the corrections due to quadratic thermal fluctuations around such trajectories. We discuss how to obtain predictions for the evolution of arbitrary observables and how to generate conformations which are representative of the transition state ensemble. We present an illustrative implementation of our method by studying the diffusion of a point particle in a 2-dimensional funneled external potential.Comment: 18 pages, 7 figures. Improvement in the text and in the figures. Version submitted for publicatio

    Field theoretic approach to the counting problem of Hamiltonian cycles of graphs

    Full text link
    A Hamiltonian cycle of a graph is a closed path that visits each site once and only once. I study a field theoretic representation for the number of Hamiltonian cycles for arbitrary graphs. By integrating out quadratic fluctuations around the saddle point, one obtains an estimate for the number which reflects characteristics of graphs well. The accuracy of the estimate is verified by applying it to 2d square lattices with various boundary conditions. This is the first example of extracting meaningful information from the quadratic approximation to the field theory representation.Comment: 5 pages, 3 figures, uses epsf.sty. Estimates for the site entropy and the gamma exponent indicated explicitl

    A Soluble Free-Fermion Model in d Dimensions

    Full text link
    We consider a vertex model in d dimensions characterized by lines which run in a preferred direction. We show that this vertex model is soluble if the weights of vertices with intersecting lines are given by a free-fermion condition, and that a fugacity -1 is associated to each loop of lines. The solution is obtained by mapping the model into a dimer problem and by evaluating a Pfaffian. We also determine the critical point and the singular behavior of the free energy.Comment: 19 pages, REVTEX, 6 figure

    Spin-Charge Separation and the Pauli Electron

    Get PDF
    The separation between the spin and the charge converts the quantum mechanical Pauli Hamiltonian into the Hamiltonian of the non-Abelian Georgi-Glashow model, notorious for its magnetic monopoles and confinement. The independent spin and charge fluctuations both lead to the Faddeev model, suggesting the existence of a deep duality structure and indicating that the fundamental carriers of spin and charge are knotted solitons.Comment: 7 pages; v2: new results added, references update

    Time scale separation and heterogeneous off-equilibrium dynamics in spin models over random graphs

    Full text link
    We study analytically and numerically the statics and the off-equilibrium dynamics of spin models over finitely connected random graphs. We identify a threshold value for the connectivity beyond which the loop structure of the graph becomes thermodynamically relevant. Glauber dynamics simulations show that this loop structure is responsible for the onset of dynamical features of a local character (dynamical heterogeneities and spontaneous time scale separation), consistently with previous (experimental and numerical) studies of glasses and spin glasses in their approach to the low temperature phase.Comment: 5 pages, latex, 2 postscript figure

    Gauge vortex dynamics at finite mass of bosonic fields

    Get PDF
    The simple derivation of the string equation of motion adopted in the nonrelativistic case is presented, paying the special attention to the effects of finite masses of bosonic fields of an Abelian Higgs model. The role of the finite mass effects in the evaluation of various topological characteristics of the closed strings is discussed. The rate of the dissipationless helicity change is calculated. It is demonstrated how the conservation of the sum of the twisting and writhing numbers of the string is recovered despite the changing helicity.Comment: considerably revised to include errata to journal versio

    Strings with Negative Stiffness and Hyperfine Structure

    Get PDF
    We propose a new string model by adding a higher-order gradient term to the rigid string, so that the stiffness can be positive or negative without loosing stability. In the large-D approximation, the model has three phases, one of which with a new type of generalized "antiferromagnetic" orientational correlations. We find an infrared-stable fixed point describing world-sheets with vanishing tension and Hausdorff dimension D_H=2. Crumpling is prevented by the new term which suppresses configurations with rapidly changing extrinsic curvature.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re27

    The Charge Ordered State from Weak to Strong Coupling

    Full text link
    We apply the Dynamical Mean Field Theory to the problem of charge ordering. In the normal state as well as in the Charge Ordered (CO) state the existence of polarons, i.e. electrons strongly coupled to local lattice deformation, is associated to the qualitative properties of the Lattice Polarization Distribution Function (LPDF). At intermediate and strong coupling a CO state characterized by a certain amount of thermally activated defects arise from the spatial ordering of preexisting randomly distributed polarons. Properties of this particular CO state gives a qualitative understanding of the low frequency behavior of optical conductivity of NiNi perovskites.Comment: 4 pages, 3 figures, to be published in J. of Superconductivity (proceedings Stripes 98
    • …
    corecore