25 research outputs found

    Changes of muscular sound during sustained isometric contraction up to exhaustion

    Full text link
    The sound (SMG) generated by the biceps muscle during isometric exercise at 20, 40, 60, and 80% of maximum voluntary contraction (MVC) up to exhaustion has been recorded by a contact transducer and integrated (iSMG), together with the surface electromyogram (EMG) in eight young untrained men. At the onset of exercise, iSMG and integrated surface EMG (iEMG) amplitude increased linearly with exercise. iSMG remained constant for 253 +/- 73 (SD), 45 +/- 16, 21 +/- 5, and 0 s at the four levels of contraction. Then iSMG increased linearly at 20% MVC, fluctuated at 40% MVC, and decreased exponentially at 60 and 80% MVC. iSMG exhaustion-to-onset ratio was 5.0 at 20%, 1.0 at 40%, and 0.2 at 60 and 80% MVC. On the contrary, independently of exercise intensity, iEMG increased with time, being 1.4 higher at exhaustion than at the onset. The nonunivocal iSMG changes with time and effort of exercise suggest that the sound may be a useful tool to acquire different information to EMG and output force during muscle contraction up to fatigue

    Kinetics of heart rate and catecholamines during exercise in humans : the effect of heart denervation

    Full text link
    To elucidate the role of factors other than the nervous system in heart rate (fc) control during exercise, the kinetics of fc and plasma catecholamine concentrations were studied in ten heart transplant recipients during and after 10-min cycle ergometer exercise at 50 W. The fc did not increase at the beginning of the exercise for about 60 s. Then in the eight subjects who completed the exercise it increased following an exponential kinetic with a mean time constant of 210 (SEM 22) s. The two other subjects were exhausted after 5 and 8 min of exercise during which fc increased linearly. At the cessation of the exercise, fc remained unchanged for about 50 s and then decreased exponentially with a time constant which was unchanged from that at the beginning of exercise. In the group of eight subjects plasma noradrenaline concentration ([NA]) increased after 30 s to a mean value above resting of 547 (SEM 124) pg \ub7 ml-1, showing a tendency to a plateau, while adrenaline concentration ([A]) did not increase significantly. In the two subjects who became exhausted an almost linear increase in [NA] occurred up to about 1,300 pg \ub7 ml-1 coupled with a significant increase in [A]. During recovery an immediate decrease in [NA] was observed towards resting values. The values of the fc increase above resting levels determined at the time of blood collection were linearly related with [NA] increments both at the beginning and end of exercise with a similar slope, i.e. about 2.5 beats \ub7 min-1 per 100 pg \ub7 ml-1 of [NA] change. These findings would seem to suggest that in the absence of heart innervation the increase in fc depends on plasma [NA]

    Muscle sound and electromyogram spectrum analysis during exhausting contractions in man

    Full text link
    The changes in the soundmyogram (SMG) and electromyogram (EMG) frequency content during exhausting contractions at 20%, 40%, 60% and 80% of the maximal voluntary contraction (MVC) were investigated by the spectral analysis of the SMG and EMG detected from the biceps brachii muscles of 13 healthy men. The root mean squares (rms) of the two signals were also calculated. Throughout contraction the EMG rms always increased while this was true only at 20% MVC for the SMG. A marked decrease was detected at 60% and 80% MVC. With fatigue the EMG spectra presented a compression towards the lower frequencies at all exercise intensities. The SMG showed a more complex behaviour with a transient increase in its frequency content, followed by a continuous compression of the spectra, at 60% and 80% MVC, and a nearly stable frequency content at lower contraction intensities. This study suggested that different aspects of the changes in the motor unit's activation strategy at different levels of exhausting contractions can be monitored by SMG and EMG signals

    The influence of exercise intensity on the power spectrum of heart rate variability

    Full text link
    The power spectral analysis of R-R interval variability (RRV) has been estimated by means of an autoregressive method in seven sedentary males at rest, during steady-state cycle exercise at 21 percent maximal oxygen uptake. (% V O 2max), SEM 2%, 49% VO 2max, SEM 2% and 70% VO 2max, SEM 2% and during recovery. The RRV, i.e. the absolute power of the spectrum, decreased 10, 100 and 500 times in the three exercise intensities, returning to resting value during recovery. In the RRV power spectrum three components have been identified: (1) high frequency peak (HF), central frequency about 0.24 Hz at rest and recovery, and 0.28 Hz, SEM 0.02, 0.37 Hz, SEM 0.03 and 0.48 Hz, SEM 0.06 during the three exercise intensities, respectively; (2) low frequency peak (LF), central frequency about 0.1 Hz independent of the metabolic state; (3) very low frequency component (VLF), <0.05 Hz, no peak observed. The HF peak power, as a percentage of the total power (HF%), averaged 16%, SEM 5% at rest and did not change during exercise, whereas during recovery it decreased to 5%\u201310%. The LF% and VLF% were about 50% and 35% at rest and during low exercise intensity, respectively. At higher intensities, LF% decreased to 16% and VLF% increased to 70%. During recovery a return to resting values occurred. The HF component may reflect the increased respiratory rate and the LF peak changes the resetting of the baroreceptor reflex with exercise. The hypothesis is made that VLF fluctuations in heart rate might be partially mediated by the sympathetic system
    corecore