8 research outputs found

    Predifferentiated GABAergic Neural Precursor Transplants for Alleviation of Dysesthetic Central Pain Following Excitotoxic Spinal Cord Injury

    Get PDF
    Intraspinal quisqualic acid (QUIS) injury induce (i) mechanical and thermal hyperalgesia, (ii) progressive self-injurious overgrooming of the affected dermatome. The latter is thought to resemble painful dysesthesia observed in spinal cord injury (SCI) patients. We have reported previously loss of endogenous GABA immunoreactive (IR) cells in the superficial dorsal horn of QUIS rats 2 weeks post injury. Further histological evaluation showed that GABA-, glycine-, and synaptic vesicular transporter VIAAT-IR persisted but were substantially decreased in the injured spinal cord. In this study, partially differentiated GABA-IR embryonic neural precursor cells (NPCs) were transplanted into the spinal cord of QUIS rats to reverse overgrooming by replenishing lost inhibitory circuitry. Rat E14 NPCs were predifferentiated in 0.1 ng/ml FGF-2 for 4 h prior to transplantation. In vitro immunocytochemistry of transplant cohort showed large population of GABA-IR NPCs that double labeled with nestin but few colocalized with NeuN, indicating partial maturation. Two weeks following QUIS lesion at T12-L1, and following the onset of overgrooming, NPCs were transplanted into the QUIS lesion sites; bovine adrenal fibroblast cells were used as control. Overgrooming was reduced in >55.5% of NPC grafted animals, with inverse relationship between the number of surviving GABA-IR cells and the size of overgrooming. Fibroblast-control animals showed a progressive worsening of overgrooming. At 3 weeks post-transplantation, numerous GABA-, nestin-, and GFAP-IR cells were present in the lesion site. Surviving grafted GABA-IR NPCs were NeuN+ and GFAP−. These results indicate that partially differentiated NPCs survive and differentiate in vivo into neuronal cells following transplantation into an injured spinal cord. GABA-IR NPC transplants can restore lost dorsal horn inhibitory signaling and are useful in alleviating central pain following SCI

    Sustained Analgesic Peptide Secretion and Cell Labeling Using a Novel Genetic Modification

    No full text
    Cell-based therapy for neuropathic pain could provide analgesics to local pain modulatory regions in a sustained, renewable fashion. In order to provide enhanced analgesic efficacy, transplantable cells may be engineered to produce complementary or increased levels of analgesic peptides. In addition, genetic labeling of modified cells is desirable for identification and tracking, but it should be retained intracellularly as desired analgesic peptides are secreted. Usually constructs encode proteins destined for either extra- or intra-cellular compartments, as these pathways do not cross. However, interactions between intracellular destinations provide a window of opportunity to overcome this limitation. In this report, we have explored this approach using a potential supplementary analgesic peptide, [Ser 1 ]-histogranin (SHG), the stable synthetic derivative of a naturally occurring peptide with N -methyl D-aspartate (NMDA) antagonistic properties. A synthetic SHG gene was combined with (i) nerve growth factor-β (NGF-β) amino-terminal signal peptide to enable secretion, and (ii) a fluorescent cellular label (mRFP) with intervening cathepsin L cleavage site, and subcloned into a lentiviral vector. In addition, an endoplasmic retention signal, KDEL, was added to enable retrieval of mRFP. Using immunocytochemistry and confocal microscopic profile analysis, cells transduced by such lentiviruses were shown to synthesize a single SHG-mRFP polypeptide that was processed, targeted to expected subcellular destinations in several cell types. Dot blot and Western analysis revealed stable transduction and long-term secretion of SHG from PC12 cells in vitro. Transplantation of such cells provided modest analgesia in a rodent pain model consistent with low levels of SHG peptide in the cerebrospinal fluid (CSF). These results suggest that it is possible to deliver proteins with different final destinations from a single construct, such as pharmacologically active peptide for secretion and intracellular label for identifying transplantable cells

    Combined Extrinsic and Intrinsic Manipulations Exert Complementary Neuronal Enrichment in Embryonic Rat Neural Precursor Cultures: an in vitro and in vivo analysis

    No full text
    Numerous CNS disorders share a common pathology in dysregulation of γ-amino butyric acid inhibitory signaling. Transplantation of GABA-releasing cells at the site of disinhibition holds promise for alleviating disease symptoms with fewer side effects than traditional drug therapies. We manipulated FGF-2 deprivation and MASH1 transcription factor levels in an attempt to amplify the default GABAergic neuronal fate in cultured rat embryonic neural precursor cells (NPCs) for use in transplantation studies. Naïve and MASH1 lentivirus-transduced NPCs were maintained in FGF-2 or deprived of FGF-2 for varying lengths of time. Immunostaining and quantitative analysis showed that GABA- and β-III-tubulin-immunoreactive cells generally decreased through successive passages, suggesting a loss of neurogenic potential in rat neurospheres expanded in vitro . However, FGF-2 deprivation resulted in a small, but significantly increased population of GABAergic cells derived from passaged neurospheres. In contrast to naïve and GFP lentivirus-transduced clones, MASH1 transduction resulted in increased BrdU incorporation and clonal colony size. Western blotting showed that MASH1 overexpression and FGF-2 deprivation additively increased β-III-tubulin and decreased CNPase expression, while FGF-2 deprivation alone attenuated GFAP expression. These results suggest that low FGF-2 signaling and MASH1 activity can operate in concert to enrich NPC cultures for a GABA neuronal phenotype. When transplanted into the adult rat spinal cord, this combination also yielded GABAergic neurons. These findings indicate that, even for successful utilization of the default GABAergic neuronal precursor fate, a combination of both extrinsic and intrinsic manipulations will likely be necessary to realize the full potential of NSC grafts in restoring function

    Successful treatment of choreo-athetotic movements in a patient with an EEF1A2 gene variant

    No full text
    Pathogenic variants in EEF1A2 , a gene encoding a eukaryotic translation elongation factor, have been previously reported in pediatric cases of epileptic encephalopathy and intellectual disability. We report a case of a 17-year-old male with a prior history of epilepsy, autism, intellectual disability, and the abrupt onset of choreo-athetotic movements. The patient was diagnosed with an EEF1A2 variant by whole exome sequencing. His movement disorder responded dramatically to treatment with tetrabenazine. To the best of our knowledge, this is the first report of successful treatment of a hyperkinetic movement disorder in the setting of EEF1A2 mutation. A trial with tetrabenazine should be considered in cases with significant choreoathetosis

    Prolonged nociceptive responses to hind paw formalin injection in rats with a spinal cord injury

    No full text
    Unilateral lesioning of the spinal dorsal horn with the excitotoxin quisqualic acid (QUIS) leads to robust degeneration of dorsal horn grey matter, and robust pain-related symptoms, such as cutaneous hypersensitivity, persist long after injury. A possible mechanism that underlies the pain-related symptoms is the disruption of dorsal horn inhibitory neuron function, leading to decreased inhibition of nociceptive neurons. Five percent formalin was injected into the hind paw of rats with either a QUIS lesion or sham lesion. Both QUIS-lesioned and sham-lesioned rats displayed bi-phasic hind paw flinches following formalin injection, but a prolonged response was observed in QUIS-lesioned rats. The expression of the immediate-early gene product Fos in the dorsal horn ipsilateral to formalin injection was similar between QUIS- and sham-lesioned rats. In QUIS-lesioned rats, however, there was a marked absence of dorsal horn neurons, particularly GABAergic neurons, compared to sham-lesioned rats. The prolonged nociceptive response observed with a unilateral QUIS lesion may be due to generalized changes in dorsal horn neuron function including a loss of inhibitory neuron function
    corecore