46 research outputs found

    Black hole elasticity and gapped transverse phonons in holography

    Full text link
    We study the elastic response of planar black hole (BH) solutions in a simple class of holographic models with broken translational invariance. We compute the transverse quasi-normal mode spectrum and the propagation speed of the lowest energy mode. We find that the speed of the lowest mode relates to the BH rigidity modulus as dictated by elasticity theory. This allows to identify these modes as transverse phonons---the pseudo Goldstone bosons of spontaneously broken translational invariance. In addition, we show that these modes have a mass gap controlled by an explicit source of the translational symmetry breaking. These results provide a new confirmation that the BHs in these models do exhibit solid properties that become more manifest at low temperatures. Also, by the AdS/CFT correspondence, this allows to extend the standard results from the effective field theory for solids to quantum-critical materials.Comment: 28 pages, 7 figures; v3: minor revisions, matching JHEP published versio

    Micro Black Holes and the Democratic Transition

    Full text link
    Unitarity implies that the evaporation of microscopic quasi-classical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasi-classical black holes, according to which all the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top the usual quantum evaporation time, there is a new time-scale which characterizes a purely classical process during which the black hole looses the ability to differentiate among the species, and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially non-democratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the other branes, that are beyond its reach. We demonstrate that in reality the system evolves classically in time, in such a way that the black hole accretes the neighboring branes. The end result is a completely democratic static configuration, in which all the branes share the same black hole, and all the species are produced with the same Hawking temperature. Thus, just like their macroscopic counterparts, the microscopic black holes are universal bridges to the hidden sector physics.Comment: 35 pages, 5 figure

    Escape from supercooling with or without bubbles: gravitational wave signatures

    Full text link
    Quasi-conformal models are an appealing scenario that can offer naturally a strongly supercooled phase transition and a period of thermal inflation in the early Universe. A crucial aspect for the viability of these models is how the Universe escapes from the supercooled state. One possibility is that thermal inflation phase ends by nucleation and percolation of true vacuum bubbles. This route is not, however, always efficient. In such case another escape mechanism, based on the growth of quantum fluctuations of the scalar field that eventually destabilize the false vacuum, becomes relevant. We study both of these cases in detail in a simple yet representative model. We determine the duration of the thermal inflation, the curvature power spectrum generated for the scales that exit horizon during the thermal inflation, and the stochastic gravitational wave background from the phase transition. We show that these gravitational waves provide an observable signal from the thermal inflation in almost the entire parameter space of interest. Furthermore, the shape of the gravitational wave spectrum can be used to ascertain how the Universe escaped from supercooling.Comment: 11 pages, 6 figures. published versio

    Critical escape velocity of black holes from branes

    Get PDF
    In recent work we have shown that a black hole stacked on a brane escapes once it acquires a recoil velocity. This result was obtained in the {\it probe-brane} approximation, {\it i.e.}, when the tension of the brane is negligibly small. Therefore, it is not clear whether the effect of the brane tension may prevent the black hole from escaping for small recoil velocities. The question is whether a critical escape velocity exists. Here, we analyze this problem by studying the interaction between a Dirac-Nambu-Goto brane and a black hole assuming adiabatic (quasi-static) evolution. By describing the brane in a fixed black hole spacetime, which restricts our conclusions to lowest order effects in the tension, we find that the critical escape velocity does not exist for co-dimension one branes, while it does for higher co-dimension branes.Comment: 10 pages, revte

    Flux Periodicities and Quantum Hair on Holographic Superconductors

    Full text link
    Superconductors in a cylindrical geometry respond periodically to a cylinder-threading magnetic flux, with the period changing from hc/2e to hc/e depending on whether the Aharonov-Bohm effects are suppressed or not. We show that Holographic Superconductors present a similar phenomenon, and that the different periodicities follow from classical no-hair theorems. We also give the Ginzburg-Landau description of the period-doubling phenomenon.Comment: 4 pages, 3 figures; article published in Physical Review Letter

    Cascading DGP

    Get PDF
    We present a higher codimension generalization of the DGP scenario which, unlike previous attempts, is free of ghost instabilities. The 4D propagator is made regular by embedding our visible 3-brane within a 4-brane, each with their own induced gravity terms, in a flat 6D bulk. The model is ghost-free if the tension on the 3-brane is larger than a certain critical value, while the induced metric remains flat. The gravitational force law `cascades' from a 6D behavior at the largest distances followed by a 5D and finally a 4D regime at the shortest scales.Comment: 4 pages; one reference added and a typo correcte

    Dynamics of domain walls intersecting black holes

    Full text link
    Previous studies concerning the interaction of branes and black holes suggested that a small black hole intersecting a brane may escape via a mechanism of reconnection. Here we consider this problem by studying the interaction of a small black hole and a domain wall composed of a scalar field and simulate the evolution of this system when the black hole acquires an initial recoil velocity. We test and confirm previous results, however, unlike the cases previously studied, in the more general set-up considered here, we are able to follow the evolution of the system also during the separation, and completely illustrate how the escape of the black hole takes place.Comment: 4 pages, 6 figure

    Vacuum destabilization from Kaluza-Klein modes in an inflating brane

    Full text link
    We discuss the effects from the Kaluza-Klein modes in the brane world scenario when an interaction between bulk and brane fields is included. We focus on the bulk inflaton model, where a bulk field Ψ\Psi drives inflation in an almost AdS5AdS_5 bulk bounded by an inflating brane. We couple Ψ\Psi to a brane scalar field ϕ\phi representing matter on the brane. The bulk field Ψ\Psi is assumed to have a light mode, whose mass depends on the expectation value of ϕ\phi. To estimate the effects from the KK modes, we compute the 1-loop effective potential V_\eff(\phi). With no tuning of the parameters of the model, the vacuum becomes (meta)stable -- V_\eff(\phi) develops a true vacuum at a nonzero ϕ\phi. In the true vacuum, the light mode of Ψ\Psi becomes heavy, degenerates with the KK modes and decays. We comment on some implications for the bulk inflaton model. Also, we clarify some aspects of the renormalization procedure in the thin wall approximation, and show that the fluctuations in the bulk and on the brane are closely related.Comment: 15 pages, 2 eps figures. Notation improved, references adde
    corecore