3,241 research outputs found

    Quartz Cherenkov Counters for Fast Timing: QUARTIC

    Full text link
    We have developed particle detectors based on fused silica (quartz) Cherenkov radiators read out with micro-channel plate photomultipliers (MCP-PMTs) or silicon photomultipliers (SiPMs) for high precision timing (Sigma(t) about 10-15 ps). One application is to measure the times of small angle protons from exclusive reactions, e.g. p + p - p + H + p, at the Large Hadron Collider, LHC. They may also be used to measure directional particle fluxes close to external or stored beams. The detectors have small areas (square cm), but need to be active very close (a few mm) to the intense LHC beam, and so must be radiation hard and nearly edgeless. We present results of tests of detectors with quartz bars inclined at the Cherenkov angle, and with bars in the form of an "L" (with a 90 degree corner). We also describe a possible design for a fast timing hodoscope with elements of a few square mm.Comment: 24 pages, 14 figure

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore